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General Motivation
• Why study compact binaries?

• One of most promising sources of gravitational waves.

• It is a good laboratory to study the phenomenology of strong gravitational
fields.

• Why boson stars?

• Matter similarities: Fluid stars and Boson stars have some similarity
concerning the way they are modelled, e.g. both can be parametrized by their
central density ρ0 and have qualitatively similar plots of total mass vs ρ0.

• Then in the strong field regime for the compact binary system the dynamics
may not depend sensitively on the details of the model.

• Inspiral phases: Plunge and merge phase of the inspiral of compact objects is
characterized by a strong dynamical gravitational field. In this regime gross
features of fluid and boson stars’ dynamics may be similar.

• Since the details of the dynamics of the stars (e.g. shocks) tend not to be
important gravitationally, boson star binaries may provide some insight into
NS binaries.
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Matter Model: Scalar Field
• Star-like solutions: A massive complex field is chosen as matter source because

it is a simple type of matter that allows a star-like solution and because there
will be no problems with shocks, low density regions, ultrarelativistic flows, etc
in the evolution of this kind of matter as opposed to fluids.

• Static spacetimes: Complex scalar fields allow the construction of static
spacetimes. The matter content is then described by Φ = φ1 + iφ2, where φ1

and φ2 are real-valued.

• Equations of motion: Klein-Gordon equation:

2φA −m2φA = 0, A = 1, 2. (1)

• Hamiltonian Formulation: In terms of the conjugate momentum field ΠA:

∂tφA =
α2

√
−g

ΠA + βi∂iφA, (2)

∂tΠA = ∂i(βiΠA) + ∂i(
√
−gγij∂jφA)−

√
−gm2φA. (3)
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Conformally Flat Approximation (CFA)

• Motivation

• Facts and assumptions:
• Full 3D Einstein equations are very complex and computationally expensive

to solve.
• Gravitational radiation is small in most systems studied so far.
• Heuristic assumption that the dynamical degrees of freedom of the

gravitational fields, i.e. the gravitational radiation, play a small role in at
least some phases of the strong field interaction of a merging binary.

• An approximation candidate:
• CFA effectively eliminates the two dynamical degrees of freedom, simplifies

the equations and allows a fully constrained evolution.
• CFA allows us to investigate the same kind of phenomena observed in the

full relativistic case, such as the description of compact objects and the
dynamics of their interaction; black hole formation; critical phenomena.
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Conformally Flat Approximation (CFA)

• Formalism

• Einstein field equations cast into 3+1/ADM form.

• The CFA prescribes a conformally flat spatial metric at all times.

• Introduce a flat metric fij as a base / background metric:

γij = ψ4fij, (4)

where the conformal factor ψ is a positive scalar function describing the ratio
between the scale of distance in the curved space and flat space (fij ≡ δij in
cartesian coordinates).

• Maximum slicing condition is used to fix the time coordinate:

Ki
i = 0,

∂tK
i
i = 0. (5)

• In this approximation all of the geometric variables can be computed from
the constraints as well as from a specific choice of coordinates.
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Conformally Flat Approximation (CFA)

• Slicing Condition

• Gives an elliptic equation for the lapse function α:

∇2α = − 2
ψ
~∇ψ · ~∇α+ αψ4

(
KijK

ij + 4π (ρ+ S)
)
. (6)

• Hamiltonian Constraint

• Gives an elliptic equation for the conformal factor ψ:

∇2ψ = −ψ
5

8
(
KijK

ij + 16πρ
)
. (7)

• Momentum Constraints

• Given elliptic equations for the shift vector components βi:

∇2βj = −1
3
γ̂ij∂i

(
~∇ · ~β

)
+ αψ416πJj − ∂i

[
ln

(
ψ6

α

)][
γ̂ik∂kβ

j

+γ̂jk∂kβi −
2
3
γ̂ij
(
~∇ · ~β

)]
. (8)
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Conformally Flat Approximation (CFA)

• Note that KijK
ij can also be expressed in terms of the flat operators. It ends

up being expressed as flat derivatives of the shift vector:

KijK
ij =

1
2α2

(
γ̂knγ̂

mlD̂mβ
kD̂lβ

n + D̂mβ
lD̂lβ

m − 2
3
D̂lβ

lD̂kβ
k

)
. (9)
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Conformally Flat Approximation (CFA)

• Then the following set of functions completely characterize the geometry at
each time slice:

α = α(t, ~r), ψ = ψ(t, ~r), βi = βi(t, ~r), (10)

where ~r depends on the coordinate choice for the spatial hypersurface.

• The solution of the gravitational system under CFA and maximal slicing
condition can be summarized as:

• Specify initial conditions for the complex scalar field.

• Solve the elliptic equations for the geometric quantities on the initial slice.

• Update the matter field values to the next slice using their equation of
motion.

• For the new configuration of matter fields, re-solve the elliptic equations for
the geometric variables and again allow the matter fields to react and evolve
to the next slice and so on.
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Conformally Flat Approximation (CFA)

• Discretization Scheme:

Lu− f = 0 ⇒ Lhuh − fh = 0. (11)

• For hyperbolic operators L: second order accurate Crank-Nicholson scheme.

• For elliptic operators L: second order accurate centred finite difference
operators.

• Dirichlet Boundary conditions applied.

• Numerical Techniques:

• pointwise Newton-Gauss-Seidel (NGS) iterative technique was used to solve
the finite difference equations originated from the hyperbolic set of equations.

• Full Approximation Storage (FAS) multigrid algorithm was applied on the
discrete version of the elliptic set of equations. NGS is used in this context
as a smoother of the solution error.
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Initial Data
• Static spherically symmetric ansatz: φ(t, r) = φ0(r)e−iωt.
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Initial Data
• Family of static spherically symmetric solutions:
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Evolution Results
• Remarks: ρ ∼ |φ(t, r)|2 = φ0(r)2, and Planck units are adopted, i.e.
G = c = ~ = 1.

• Results summary:

• Initial data:
• Each boson star is modelled as a static, spherically symmetric solution of

the Einstein-Klein-Gordon system.
• They each have a central scalar field value of φ0(0) = 0.02, that

corresponds to a boson star with radius of R99 ' 17 and ADM mass of
MADM ' 0.475.
• Each solution is then superposed and boosted in opposite directions (along
x axis).

• Evolution:
• Orbital motion and interrupted orbits: The stars lie along the y axis with a

coordinate separation between their centers of 40. Three distinct cases
studied corresponding to different initial velocities:
· vx = 0.09: two orbital periods.
· vx = 0.07: rotating boson star as final merger.
· vx = 0.05: possible black-hole formation.

• Head-on collision: Stars along x axis with coordinate separation of 50:
· vx = 0.4: solitonic behaviour.
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Evolution Results
• Orbital Dynamics: 2 boson stars - vx = 0.09.

Z = 0 slice for |φ| Z = 0 slice for α

• φ0 : 0.02. Physical coordinate domain: 120 per edge. Physical time: t = 4500.
Simulation parameters: Courant factor λ = 0.4; Grid size: 1133; 2.4GHz
Dual-Core AMD Opteron CPU time: 285 hours (12 days).
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Evolution Results
• Orbital Dynamics: 2 boson stars - vx = 0.07.

Z = 0 slice for |φ| Z = 0 slice for α

• φ0 : 0.02. Physical coordinate domain: 120 per edge. Physical time: t = 2250.
Simulation parameters: Courant factor λ = 0.4; Grid size: 1133; 2.4GHz
Dual-Core AMD Opteron CPU time: 158 hours (6.5 days).
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Evolution Results
• Orbital Dynamics: 2 boson stars - vx = 0.05.

Z = 0 slice for |φ| Z = 0 slice for α

• φ0 : 0.02. Physical coordinate domain: 120 per edge. Physical time: t = 1500.
Simulation parameters: Courant factor λ = 0.4; Grid size: 1133; 2.4GHz
Dual-Core AMD Opteron CPU time: 115 hours (4.5 days).
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Evolution Results
• Head-on collision: 2 boson stars - vx = 0.4.

Z = 0 slice for |φ| Z = 0 slice for α

• φ0 : 0.02. Physical coordinate domain: [−50, 50,−25, 25,−25, 25]. Total
physical time: t = 140. Simulation parameters: λ = 0.4; Grid size:
[Nx, Ny, Nz] = [129, 65, 65];
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Conclusion and Future Directions
• We were able to probe a few outcomes of the orbital dynamics of boson stars

within the CFA.

• At least qualitatively, we observed a few characteristic phenomena of the fully
relativistic case, such as orbital precession and scalar matter solitonic behaviour.

• These results are quite promising and suggest that, with enhancements such as
the incorporation of AMR techniques and parallel execution capabilities, this
code will be a powerful tool for investigating the strong gravity effects in the
interaction of boson stars.

• We hope, in the future, to be able to calibrate the CFA fidelity to the fully
general relativistic case and use this code to survey the parameter space of the
orbital dynamics.
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Appendix A - CFA equations of motion

• 3d Cartesian Coordinates

∂tφA =
α

ψ6
ΠA + βi∂iφA (12)

∂tΠA = ∂x
(
βxΠA + αψ2∂xφA

)
+ ∂y

(
βyΠA + αψ2∂yφA

)
(13)

+ ∂z
(
βzΠA + αψ2∂zφA

)
− αψ6dU(φ2

0)
dφ2

0

φA

∂2α

∂x2
+
∂2α

∂y2
+
∂2α

∂z2
= − 2

ψ

[
∂ψ

∂x

∂α

∂x
+
∂ψ

∂y

∂α

∂y
+
∂ψ

∂z

∂α

∂z

]
+αψ4

(
KijK

ij + 4π (ρ+ S)
)

(14)

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
= −ψ

5

8
(
KijK

ij + 16πρ
)

(15)
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Appendix A - CFA equations of motion

• x component of the shift vector in cartesian coordinates

∂2βx

∂x2
+
∂2βx

∂y2
+
∂2βx

∂z2
= −1

3
∂

∂x

(
∂βx

∂x
+
∂βy

∂y
+
∂βz

∂z

)
+ αψ4 16πJx

− ∂

∂x

[
ln

(
ψ6

α

)][
4
3
∂βx

∂x
− 2

3

(
∂βy

∂y
+
∂βz

∂z

)]
− ∂

∂y

[
ln

(
ψ6

α

)][
∂βx

∂y
+
∂βy

∂x

]
− ∂

∂z

[
ln

(
ψ6

α

)][
∂βx

∂z
+
∂βz

∂x

]
(16)

• KijK
ij in 3d cartesian coordinates

KijK
ij = 1

2α2

[(
∂βx

∂x

)2

+
(
∂βx

∂y

)2

+
(
∂βx

∂z

)2

+
(
∂βy

∂x

)2

+
(
∂βy

∂y

)2

+
(
∂βy

∂z

)2

+
(
∂βz

∂x

)2

+
(
∂βz

∂y

)2

+
(
∂βz

∂z

)2

+ ∂
∂x

(
βx ∂∂x + βy ∂∂y + βz ∂∂z

)
βx

+ ∂
∂y

(
βx ∂∂x + βy ∂∂y + βz ∂∂z

)
βy + ∂

∂z

(
βx ∂∂x + βy ∂∂y + βz ∂∂z

)
βz

−2
3

(
∂βx

∂x + ∂βx

∂x + ∂βx

∂x

)2
]

(17)

19



Appendix B: Boson Stars in Spherical Symmetry
• Spherically Symmetric Spacetime (SS):

ds2 =
(
−α2 + a2β2

)
dt2 + 2a2β dtdr + a2dr2 + r2b2dΩ2 , (18)

• Hamiltonian constraint:

− 2
arb

{[
(rb)′

a

]′
+

1
rb

[(
rb

a
(rb)′

)′
− a

]}
+ 4Kr

rK
θ
θ + 2Kθ

θ
2

=

8π
[
|Φ|2 + |Π|2

a2
+m2|φ|2

]
(19)

• Momentum constraint:

Kθ
θ
′ +

(rb)′

rb

(
Kθ

θ −Kr
r

)
=

2π
a

(Π∗Φ + ΠΦ∗) . (20)

where the auxiliary field variables were defined as:

Φ ≡ φ′ , (21)

Π ≡ a

α

(
φ̇− βφ′

)
, (22)
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Boson Stars in Spherical Symmetry
• Evolution equations

ȧ = −αaKr
r + (aβ)′ (23)

ḃ = −αbKθ
θ +

β

r
(rb)′ . (24)

˙Kr
r = βKr′

r −
1
a

(
α′

a

)′
+ α

{
− 2
arb

[
(rb)′

a

]′
+KKr

r − 4π
[

2|Φ|2

a2
+m2|φ|2

]}
(25)

˙Kθ
θ = βKθ′

θ +
α

(rb)2
− 1
a(rb)2

[
αrb

a
(rb)′

]′
+ α

(
KKθ

θ − 4πm2|φ|2
)

(26)

• Field evolution equations

φ̇ =
α

a
Π + βΦ (27)

Φ̇ =
(
βΦ +

α

a
Π
)′

(28)

Π̇ =
1

(rb)2
[
(rb)2

(
βΠ +

α

a
Φ
)]′
− αam2φ+ 2

[
αKθ

θ − β
(rb)′

rb

]
Π (29)
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Appendix B: Boson Stars in Spherical Symmetry
• Maximal-isotropic coordinates

• Maximal slicing condition

K ≡ Ki
i = 0 K̇(t, r) = 0 (30)

• Isotropic condition
a = b ≡ ψ(t, r)2 (31)

• They fix the lapse and shift (equivalent of fixing the coordinate system)

α′′+
2
rψ2

d

dr2
(
r2ψ2

)
α′+

[
4πψ4m2|φ|2 − 8π|Π|2 − 3

2
(
ψ2Kr

r

)2]
α = 0 (32)

r

(
β

r

)′
=

3
2
αKr

r (33)

• Constraint equations

3
ψ5

d

dr3

(
r2
dψ

dr

)
+

3
16
Kr

r
2 = −π

(
|Φ|2 + |Π|2

ψ4
+m2|φ|2

)
(34)

Kr
r
′ + 3

(rψ2)′

rψ2
Kr

r = −4π
ψ2

(Π∗Φ + ΠΦ∗) (35)
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Appendix B: Boson Stars in Spherical Symmetry
• Complex-scalar field evolution equations

φ̇ =
α

ψ2
Π + βΦ (36)

Φ̇ =
(
βΦ +

α

ψ2
Π
)′

(37)

Π̇ =
3
ψ4

d

dr3

[
r2ψ4

(
βΠ +

α

ψ2
Φ
)]
− αψ2m2φ

−
[
αKr

r + 2β
(rψ2)′

rψ2

]
Π (38)
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Appendix B: Boson Stars in Spherical Symmetry
• These equations were coded using RNPL and tested for a gaussian pulse as

initial data.
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Appendix B: Boson Stars in Spherical Symmetry
• Initial Value Problem

• We are interested in generating static solutions of the Einstein- Klein-Gordon
system

• There is no regular, time-independent configuration for complex scalar fields
but one can construct harmonic time-dependence that produce time-independ
ent metric

• We adopt the following ansatz for boson stars in spherical symmetry in order to
produce a static spacetime:

φ(t, r) = φ0(r) e−iωt , β = 0 (39)

where the last condition comes from the demand of a static timelike Killing
vector field.

• Polar-Areal coordinates

K = Kr
r b = 1 (40)

• Generalization of the usual Schwarzschild coordinates to time-dependent,
spherically symmetric spacetimes. Easier to generate the initial data solution
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Appendix B: Boson Stars in Spherical Symmetry
• The line element

ds2 = −α2dt2 + a2dr2 + r2dΩ2 . (41)

• The equations of motions are cast in a system of ODEs. It becomes an
eigenvalue problem with eigenvalue ω = ω(φ0(0))

a′ =
1
2

{
a

r

(
1− a2

)
+ 4πra

[
φ2a2

(
m2 +

ω2

α2

)
+ Φ2

]}
(42)

α′ =
α

2

{
a2 − 1
r

+ 4πr
[
a2φ2

(
ω2

α2
−m2

)
+ Φ2

]}
(43)

φ′ = Φ (44)

Φ′ = −
(
1 + a2 − 4πr2a2m2φ2

) Φ
r
−
(
ω2

α2
−m2

)
φa2 (45)
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Appendix B: Boson Stars in Spherical Symmetry
• Field configuration and its aspect mass function for φ0(0) = 0.05. Its

eigenvalue was ”shooted” to be ω = 1.1412862322

• Note its exponentially decaying tail as opposed to the sharp edge ones for its
fluids counterparts
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Appendix B: Boson Stars in Spherical Symmetry
• The ADM mass as a function of the central density and the radius of the star

as a function of ADM mass. Note their similarity to the fluid stars
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