Simulations of the Gravity Dual in an AdS/CFT Correspondence

Hans Bantilan

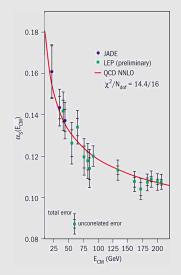
June 15, 2009

OUTLINE

- Motivations
 - heavy ion collision
 - dual system on the gravity side
- AdS/CFT
 - approximation to QCD
 - dictionary to translate between a CFT and gravity
- Preliminary simulations
- Initial data
 - evolution "forward in time"
 - constraints for initial spatial hypersurface

• Summary

MOTIVATIONS



- Many problems in QCD are non-perturbative
 - not amenable to usual methods based on Feynman graphs
 - hard to solve
- Perturbative methods questionable because the QCD running coupling α_s can be as large as $\frac{1}{2}$
 - $\label{eq:generalized_s} \begin{array}{l} \circ \ \mbox{seen from RG equation for } \alpha_s \\ p \frac{d\alpha_s}{dp} \sim \beta(\alpha_s) < 0 \end{array}$
 - instead, gravity description via AdS/CFT

FIGURE: Running coupling α_s as a function of CM energy E_{CM}^{-1}

¹CERN Courier

MOTIVATIONS

- Hope is that we could use the AdS/CFT duality to make experimentally testable predictions about QCD processes
 - work by Steve Gubser's group in linearized gravity to describe a QGP in terms of a BH's quasinormal modes
- Heavy ion collision at RHIC
 - Au-Au collision with center-of-mass energy $\sqrt{s} = 200 \text{ [MeV]}$
 - Forms deconfined fluid of quarks and gluons called a quark-gluon plasma (QGP)
 - $\circ~$ QGP thermalizes, contracts, then expands under its own pressure, with lifetime of $\sim 10~[{\rm fm/c}]$
- Gravity dual
 - BH-BH collision in d = 5 anti-de Sitter space (AdS₅)
 - merger of compact massive binaries is the subject of much work in numerical relativity

Approximation to QCD

- Major obstacle is the current lack of a gravity dual for QCD (N = 3, so AdS/CFT not directly applicable)
 - so try approximating QCD with a CFT toy model
 - replace QCD by $\mathcal{N} = 4$ super-Yang-Mills, with symmetry group SU(N) in the limit as $N \to \infty$

QCD VS SYM (ZERO TEMPERATURE T = 0)

Quantum Chromodynamics	$\mathcal{N} = 4$ super-Yang-Mills
confining	not confining
not conformal	conformal
quarks	adjoint matter
not supersymmetric	supersymmetric
N = 3	$N \to \infty$

QCD VS SYM (FINITE TEMPERATURE $T > T_c$)²

Quantum Chromodynamics	$\mathcal{N} = 4$ super-Yang-Mills
not confining	not confining
not conformal	not conformal
quarks	adjoint matter
not supersymmetric	$not\ supersymmetric$
N = 3	$N \to \infty$

 $^2T_c\sim 190~[{\rm MeV}]$ critical temperature above which QCD deconfines

AdS/CFT Duality

- The idea behind the duality: describe a limiting case of string theory in two alternative ways
 - two alternative descriptions of string theory in the low-energy limit

AdS/CFT Duality

Gauge Theory Description	Supergravity Description
$\mathcal{N} = 4$ super-Yang-Mills	extremal supergravity solution
$(N \to \infty \text{ for } SU(N) \text{ symmetry group})$	$(r \rightarrow 0 \text{ for radial coordinate } r)$

$$g = \left(1 + \frac{L^4}{r^4}\right)^{-\frac{1}{2}} \left(-dt^2 + d\vec{x}_3^2\right) + \left(1 + \frac{L^4}{r^4}\right)^{\frac{1}{2}} \left(dr^2 + r^2 d\Omega_5^2\right)$$

$$g = \left(1 + \frac{L^4}{r^4}\right)^{-\frac{1}{2}} \left(-dt^2 + d\vec{x}_3^2\right) + \left(1 + \frac{L^4}{r^4}\right)^{\frac{1}{2}} \left(dr^2 + r^2 d\Omega_5^2\right)$$

$$\bigcup \text{ using } r \to 0$$

AdS/CFT Duality

ADS/CFT DICTIONARY

Entry: AdS₅ metric perturbations δg_{ij} near the boundary / CFT energy-momentum tensor

$$\langle T_{ij} \rangle_{CFT} = \frac{L^3}{4\pi G_5} \lim_{z \to 0} \frac{1}{z^4} \delta g_{ij}$$

- Dimensionally reduce a 4 + 1 simulation in $(t, \rho, \chi, \theta, \phi)$ to an effective 2 + 1 simulation in (t, ρ, χ)
 - $\circ~$ each point in the effective 2+1 spacetime is a 2-sphere parametrized by θ,ϕ
 - θ, ϕ only appear in the full metric as the static 2-sphere metric $d\Omega_2^2$, multiplied by an overall conformal factor
 - left with radial $\rho \in [0, 1]$ and angular $\chi \in [0, \pi]$

PRELIMINARY SIMULATIONS

Loading ...

PRELIMINARY SIMULATIONS

- Solve generalized-harmonic form of the Einstein equations $R_{\mu\nu} = 8\pi \left(T_{\mu\nu} \frac{1}{2}Tg_{\mu\nu}\right)$
 - $\circ~$ introduce source functions H^{μ} such that the coordinates satisfy $\Box x^{\mu}=H^{\mu}$
 - reexpress $R = d\Gamma + \Gamma \wedge \Gamma$ in terms of H^{μ}
 - the principal part of Einstein equations then becomes the wave operator $g^{\mu\nu}\partial_{\mu}\partial_{\nu}$ (hyperbolic), giving stable evolution
- The coordinate degrees of freedom are encoded in the source functions H^{μ}
 - gauge choice amounts to specifying the evolution equations satisfied by H^{μ} (eg: harmonic gauge $H^{\mu} = 0$)

INITIAL DATA

- Foliate an (n + 1)-dimensional manifold into a family of *n*-dimensional hypersurfaces $\{\Sigma_t\}_{t \in \mathbb{R}}$
 - $\circ~$ amounts to a "space + time" splitting that arbitrarily singles out a timelike coordinate t
 - $\circ~$ used to generate the time evolution of objects on the Σ_t spatial hypersurfaces
 - decomposes Einstein equations into evolution equations and constraint equations

INITIAL DATA

- The constraint equations are conditions within each Σ_t
 - ensures that Σ_t hypersurfaces can be embedded in AdS₅

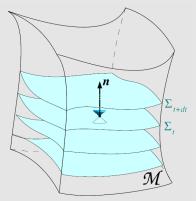


FIGURE: dim-n + 1 manifold \mathcal{M} foliated by dim-n hypersurfaces Σ_t^{3}

³Bases of Numerical Relativity, E. Gourgoulhon

INITIAL DATA

- Start from the Einstein equations with energy-momentum source $R_{\mu\nu} \frac{1}{2}Rg_{\mu\nu} \Lambda_5 g_{\mu\nu} = 8\pi T_{\mu\nu}$
 - contract with two copies of a time-like one-form $n = -\alpha(x)dt$ normal to the initial data hypersurface Σ_{t_0}
 - $\circ\,$ reexpress time-time contraction R(n,n) of the Ricci tensor in terms of hypersurface objects
- Result is the Hamiltonian constraint equation
 - solved to reconstruct consistent initial data

SUMMARY

- What physics can we hope to extract from these simulations?
 - $\circ~$ full numerical analysis of colliding black holes in an asymptotically ${\rm AdS}_5$ spacetime
 - extract $\langle T_{ij} \rangle_{CFT}$ from the AdS₅ metric perturbations δg_{ij} near the boundary
 - compare extracted parameters (eg: thermalization time) to known parameters of QGPs produced at RHIC
- Working towards a generic code
 - $\circ~$ can be applied to a wide variety of systems on ${\rm AdS}_5$
 - mapped to a variety of dual problems relevant to RHIC