Euclidean quantum gravity revisited

Tomáš Liko

Institute for Gravitation and the Cosmos, Pennsylvania State University

15 June 2009 Eastern Gravity Meeting, Rochester Institute of Technology

Based on: First-order action and Euclidean quantum gravity, *Preprint* arXiv:0810.0297 [gr-qc], In press in *Classical and Quantum Gravity*

1 The general Problem

- Black hole thermodynamics
- Approaches to quantum gravity
- 2 Path integral approach to quantum gravity
 - Overview: Path integrals in field theory
 - Metric-based actions for gravity
- 3 Resolution: First-order formalism
 - First-order action
 - Applications

4 Further work

5 Acknowledgments

Black hole thermodynamics Approaches to quantum gravity

Black hole thermodynamics

Black holes have thermal properties: consider e.g. the Schwarzschild solution

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

Variables

M mass and r radial distance from center

- Schwarzschild black hole has a temperature $T = 1/(8\pi M)$ and an entropy $\mathscr{S} = 4\pi M^2$; in general a black hole has a temperature $T = \kappa/(2\pi)$ and an entropy $\mathscr{S} = A/4$; κ is the surface gravity and A is the surface area
- Example: the entropy of a one solar-mass Schwarzschild black hole is $\mathscr{S}=2.895\times10^{54}~J\cdot\text{K}^{-1}$
- Quantum gravity will explain this entropy from first principles_

The general Problem

Path integral approach to quantum gravity Resolution: First-order formalism Further work Acknowledgments

Black hole thermodynamics Approaches to quantum gravity

Approaches to quantum gravity

As for any field theory, there are three different representations that can be employed to quantize gravity:

- \bullet Canonical approach \longrightarrow loop quantum gravity
 - Background independent
 - Requires a space-time split
- Covariant approach \longrightarrow perturbative string theory
 - Adapted to particle physics
 - Requires a fixed non-dynamical background
- Path integral approach \longrightarrow Euclidean quantum gravity
 - Does not require a space-time split; does not require fixed background
 - Disadvantages? See below!

(人間) とうき くうり

Overview: Path integrals in field theory Metric-based actions for gravity

Overview: Path integrals in field theory

Recall from statistical mechanics the partition function

$$\mathcal{Z} = \mathsf{Tr}\left[\exp\left(-\beta\hat{H}[\phi]
ight)
ight] \longrightarrow \mathcal{Z} = \int \mathcal{D}[\phi]\exp\left(-\tilde{I}[\phi]
ight)$$

Variables

 ϕ fields, β inverse temperature, \hat{H} Hamiltonian and \tilde{I} Euclidean action

- \bullet Typically hard to evaluate ${\mathcal Z}$ exactly, so need approximation
- Standard trick for thermodynamics is to expand action around solutions ϕ_0 to the equations of motion $\delta \tilde{I} = 0$ and evaluate the *on-shell* partition function

$$\mathcal{Z} = \exp\left(-\tilde{I}[\phi_0]
ight)$$

• Average energy $\langle E \rangle$ and entropy ${\mathscr S}$ can then be derived via:

$$\langle E \rangle = -\frac{\partial \ln \mathcal{Z}}{\partial \beta}$$
 and $\mathscr{S} = \beta \langle E \rangle + \ln \mathcal{Z}$

B b d B b

Metric-based actions for gravity: Gibbons-Hawking-York

The action for gravity on a manifold ${\cal M}$ with boundary $\partial {\cal M}$ in second-order form is given by:

$$\tilde{I}[g] = rac{1}{2\kappa} \int_{\mathcal{M}} R d^D V + rac{1}{\kappa} \oint_{\partial \mathcal{M}} (K - K_0) d^{D-1} V$$

Variables

 $\kappa = 8\pi$ (with $G_D = 1$), R Ricci scalar of spacetime metric g and K trace of extrinsic curvature of boundary, $d^D V$ is volume element determined by g, and $d^{D-1}V$ is volume element determined by induced metric h on ∂M

- For asymptotically flat spacetimes, the action is infinite, even for Minkowski spacetime itself
- Therefore ones adds the K_0 term to the boundary action, which is the extrinsic curvature of the boundary *embedded in flat spacetime*
- Resulting action is finite, but K₀ requires an isometric embedding into flat spacetime by definition and so the prescription cannot be applied to certain spacetimes

Overview: Path integrals in field theory Metric-based actions for gravity

Metric-based actions for gravity: Mann-Marolf

A resolution to the problem is to define a new infinite counter-term that does not require an embedding at all. The resulting action, with Mann-Marolf counter-term \hat{K} is given by

$$\tilde{I}[g] = \frac{1}{2\kappa} \int_{\mathcal{M}} R d^{D} V + \frac{1}{\kappa} \oint_{\partial \mathcal{M}} (K - \hat{K}) d^{D-1} V$$

• \hat{K} is the trace of the tensor \hat{K}_{ij} , a local function of the boundary Ricci tensor $\hat{\mathcal{R}}_{ij}$, which is implicitly defined by solving the algebraic equation

$$\hat{\mathcal{R}}_{ij} = \hat{K}_{ij}\hat{K} - \hat{K}_i^{\ k}\hat{K}_{kj}$$

- This prescription is motivated by the Gauss-Codazzi equation
- Physically, it is desirable to employ a framework that generically produces finite quantities *without the need of adding any counter-terms*!

This leads us to consider...

.

First-order action Applications

First-order action

In the first-order formulation of general relativity the action is given by

$$\tilde{I}[e,A] = \frac{1}{4\kappa} \int_{\mathcal{M}} \epsilon_{IJKL} e^{I} \wedge e^{J} \wedge \Omega^{KL} - \frac{1}{4\kappa} \oint_{\partial \mathcal{M}} \epsilon_{IJKL} e^{I} \wedge e^{J} \wedge A^{KL}$$

Variables

 e^{l} coframe, A^{l}_{J} an SO(4) connection, Ω^{l}_{J} associated curvature and ϵ_{IJKL} the totally antisymmetric Levi-Civita tensor

- Boundary term is the natural one on the configuration space $C = \{e, A\}$ that is required by differentiablility
- Resulting action is both finite without the need of adding any counter-terms, and does not make any reference to the embedding of boundary in flat space
- Same boundary term in fact works for asymptotically anti-de Sitter spacetimes as well

・ロッ ・雪 ・ ・ ヨ ・ ・

First-order action Applications

Evaluation of the action: General considerations

- For black-hole spacetimes in vacuum, the bulk action is zero
- To evaluate the boundary terms, standard prescription is to evaluate seperately the contributions from the inner and outer boundaries by calculating the integrals on constant-*r* hypersurfaces and taking the limits as *r* goes to the horizon and to infinity; for all three examples considered below the contribution from the inner limit is zero
- In the first-order formalism, the calculation of τ_{∞} 's contribution amounts to calculating the ²A contribution to the boundary integral, which can be obtained by expanding the co-frame in powers of r^{-1} and substituting the ¹e term in the equation

$${}^{2}A^{IJ} = 2r^{2}\partial^{\left[J\left(\frac{1e^{I}}{r}\right)\right]}$$

• The corresponding action becomes

$$\tilde{I} = \frac{1}{\kappa} \oint_{\infty} {}^{0} e_{2} {}^{2} {}^{0} e_{3} {}^{3} \frac{{}^{2} A_{0} {}^{01}}{r^{2}} \partial_{1} r$$

4 B K 4 B K

First-order action Applications

Example 1: Schwarzschild spacetime

Consider Euclidean Schwarzschild spacetime with line element as given by

$$ds^{2} = \left(1 - \frac{2M}{r}\right) d\tau^{2} + \left(1 - \frac{2M}{r}\right)^{-1} dr^{2} + r^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

Note

Because time is now Euclidean the signature of the metric is (+ + ++) instead of (- + ++)

- Regularity of the metric requires that au have a period $eta=8\pi M$
- Action is evaluated to be $\tilde{I} = \frac{\beta^2}{16\pi}$
- Partition function is then $\mathcal{Z} = \exp[-\beta^2/(16\pi)]$
- Thermodynamic quantities are therefore $\langle E \rangle = M$ and $\mathscr{S} = 4\pi M^2 = A/4$

・ロト ・四ト ・モト ・モト

First-order action Applications

Example 2: NUT-charged spacetimes

Consider Euclidean Taub-NUT spacetime with line element given by

$$ds^{2} = V(r) \left[d\tau + 2N\cos\theta d\phi \right]^{2} + \frac{dr^{2}}{V(r)} + (r^{2} - N^{2})(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

Variables

$$V(r) = (r^2 - 2Mr + N^2)/(r^2 - N^2)$$
 and N the NUT parameter

- N = M is referred to as the "NUT" charge; N = 4M/5 is referred to as the "bolt" charge
- Regularity of the metric requires that au have a period $eta=8\pi N$
- Action is evaluated to be $\tilde{I} = 4\pi MN$
- Partition function is then $\mathcal{Z} = \exp(-4\pi MN)$
- Substituting M = N into \mathcal{Z} we find $\langle E \rangle = N$ and $\mathscr{S} = 4\pi N^2$; substituting M = 5N/4 into \mathcal{Z} we find $\langle E \rangle = 5N/4$ and $\mathscr{S} = 5\pi N^2$

Further work

Two directions are currently under investigation:

- Extend the formalism to asymptotically anti-de Sitter spacetimes; first-order boundary term is the same as for asymptotically flat spacetimes but asymptotics are different, therefore the partition function at ∞ will be different
- Look at stability of systems in first-order formalism: here we considered only the on-shell partition function. It would be of considerable interest to include the first quantum correction, i.e. quadratic term in the expansion of \tilde{I} . In the first-order framework there is an additional term in the action given by

$$\widetilde{H}=-rac{1}{2\kappa\gamma}\int_{\mathcal{M}}e^{I}\wedge e^{J}\wedge\Omega_{IJ};$$

 γ is the Barbero-Immirzi parameter which does not show up in the equations of motion but does in the quadratic term. This may have important implications for the stability of asymptotically flat spacetimes

Acknowledgments

- The work presented here was done in collaboration with David Sloan
- The work was supported by the Natural Sciences and Engineering Research Council of Canada through a postdoctoral fellowship, National Science Foundation grant PHY0854743, The George A. and Margaret M. Downsbrough Endowment and the Eberly research funds of Penn State.