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Tomáš Liko Euclidean quantum gravity revisited



The general Problem
Path integral approach to quantum gravity

Resolution: First-order formalism
Further work

Acknowledgments

1 The general Problem
Black hole thermodynamics
Approaches to quantum gravity

2 Path integral approach to quantum gravity
Overview: Path integrals in field theory
Metric-based actions for gravity

3 Resolution: First-order formalism
First-order action
Applications

4 Further work

5 Acknowledgments
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Black hole thermodynamics

Black holes have thermal properties: consider e.g. the Schwarzschild
solution

ds2 = −

(
1 −

2M

r

)
dt2 +

(
1 −

2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2)

Variables

M mass and r radial distance from center

Schwarzschild black hole has a temperature T = 1/(8πM) and an
entropy S = 4πM2; in general a black hole has a temperature
T = κ/(2π) and an entropy S = A/4; κ is the surface gravity and
A is the surface area

Example: the entropy of a one solar-mass Schwarzschild black hole
is S = 2.895 × 1054 J · K−1

Quantum gravity will explain this entropy from first principles
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Approaches to quantum gravity

As for any field theory, there are three different representations that can
be employed to quantize gravity:

Canonical approach −→ loop quantum gravity

Background independent

Requires a space-time split

Covariant approach −→ perturbative string theory

Adapted to particle physics

Requires a fixed non-dynamical background

Path integral approach −→ Euclidean quantum gravity

Does not require a space-time split; does not require fixed

background

Disadvantages? See below!
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Overview: Path integrals in field theory

Recall from statistical mechanics the partition function

Z = Tr
[
exp

(
−βĤ [φ]

)]
−→ Z =

∫
D[φ]exp

(
−Ĩ [φ]

)

Variables

φ fields, β inverse temperature, Ĥ Hamiltonian and Ĩ Euclidean action

Typically hard to evaluate Z exactly, so need approximation
Standard trick for thermodynamics is to expand action around
solutions φ0 to the equations of motion δĨ = 0 and evaluate the
on-shell partition function

Z = exp
(
−Ĩ [φ0]

)

Average energy 〈E 〉 and entropy S can then be derived via:

〈E 〉 = −
∂lnZ

∂β
and S = β〈E 〉 + lnZ
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Metric-based actions for gravity: Gibbons-Hawking-York

The action for gravity on a manifold M with boundary ∂M in
second-order form is given by:

Ĩ [g ] =
1

2κ

∫

M

RdDV +
1

κ

∮

∂M

(K − K0)d
D−1V

Variables

κ = 8π (with GD = 1), R Ricci scalar of spacetime metric g and K trace
of extrinsic curvature of boundary, dDV is volume element determined by
g , and dD−1V is volume element determined by induced metric h on ∂M

For asymptotically flat spacetimes, the action is infinite, even for
Minkowski spacetime itself
Therefore ones adds the K0 term to the boundary action, which is
the extrinsic curvature of the boundary embedded in flat spacetime
Resulting action is finite, but K0 requires an isometric embedding
into flat spacetime by definition and so the prescription cannot be
applied to certain spacetimes
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Metric-based actions for gravity: Mann-Marolf

A resolution to the problem is to define a new infinite counter-term that
does not require an embedding at all.The resulting action, with
Mann-Marolf counter-term K̂ is given by

Ĩ [g ] =
1

2κ

∫

M

RdDV +
1

κ

∮

∂M

(K − K̂ )dD−1V

K̂ is the trace of the tensor K̂ij , a local function of the boundary

Ricci tensor R̂ij , which is implicitly defined by solving the algebraic
equation

R̂ij = K̂ijK̂ − K̂ k
i K̂kj

This prescription is motivated by the Gauss-Codazzi equation

Physically, it is desirable to employ a framework that generically
produces finite quantities without the need of adding any
counter-terms!

This leads us to consider...
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First-order action

In the first-order formulation of general relativity the action is given by

Ĩ [e, A] =
1

4κ

∫

M

ǫIJKLe
I ∧ eJ ∧ ΩKL −

1

4κ

∮

∂M

ǫIJKLe
I ∧ eJ ∧ AKL

Variables

e I coframe, AI
J an SO(4) connection, ΩI

J associated curvature and ǫIJKL

the totally antisymmetric Levi-Civita tensor

Boundary term is the natural one on the configuration space
C = {e, A} that is required by differentiablility

Resulting action is both finite without the need of adding any
counter-terms, and does not make any reference to the embedding
of boundary in flat space

Same boundary term in fact works for asymptotically anti-de Sitter
spacetimes as well
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Evaluation of the action: General considerations

For black-hole spacetimes in vacuum, the bulk action is zero
To evaluate the boundary terms, standard prescription is to evaluate
seperately the contributions from the inner and outer boundaries by
calculating the integrals on constant-r hypersurfaces and taking the
limits as r goes to the horizon and to infinity; for all three examples
considered below the contribution from the inner limit is zero
In the first-order formalism, the calculation of τ∞’s contribution
amounts to calculating the 2A contribution to the boundary integral,
which can be obtained by expanding the co-frame in powers of r−1

and substituting the 1e term in the equation

2AIJ = 2r2∂[J

(
1e I ]

r

)

The corresponding action becomes

Ĩ =
1

κ

∮

∞

0e 2
2

0e 3
3

2A 01
0

r2
∂1r
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Example 1: Schwarzschild spacetime

Consider Euclidean Schwarzschild spacetime with line element as given by

ds2 =

(
1 −

2M

r

)
dτ2 +

(
1 −

2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2)

Note

Because time is now Euclidean the signature of the metric is (+ + ++)
instead of (− + ++)

Regularity of the metric requires that τ have a period β = 8πM

Action is evaluated to be Ĩ = β2

16π

Partition function is then Z = exp[−β2/(16π)]

Thermodynamic quantities are therefore 〈E 〉 = M and
S = 4πM2 = A/4

Tomáš Liko Euclidean quantum gravity revisited



The general Problem
Path integral approach to quantum gravity

Resolution: First-order formalism
Further work

Acknowledgments

First-order action
Applications

Example 2: NUT-charged spacetimes

Consider Euclidean Taub-NUT spacetime with line element given by

ds2 = V (r) [dτ + 2N cos θdφ]
2
+

dr2

V (r)
+ (r2 − N2)(dθ2 + sin2 θdφ2)

Variables

V (r) = (r2 − 2Mr + N2)/(r2 − N2) and N the NUT parameter

N = M is referred to as the “NUT” charge; N = 4M/5 is referred to
as the “bolt” charge

Regularity of the metric requires that τ have a period β = 8πN

Action is evaluated to be Ĩ = 4πMN

Partition function is then Z = exp(−4πMN)

Substituting M = N into Z we find 〈E 〉 = N and S = 4πN2;
substituting M = 5N/4 into Z we find 〈E 〉 = 5N/4 and S = 5πN2
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Further work

Two directions are currently under investigation:

Extend the formalism to asymptotically anti-de Sitter spacetimes;
first-order boundary term is the same as for asymptotically flat
spacetimes but asymptotics are different, therefore the partition
function at ∞ will be different

Look at stability of systems in first-order formalism: here we
considered only the on-shell partition function. It would be of
considerable interest to include the first quantum correction, i.e.
quadratic term in the expansion of Ĩ . In the first-order framework
there is an additional term in the action given by

H̃ = −
1

2κγ

∫

M

e I ∧ eJ ∧ ΩIJ ;

γ is the Barbero-Immirzi parameter which does not show up in the
equations of motion but does in the quadratic term. This may have
important implications for the stability of asymptotically flat
spacetimes
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