Introduction	Motivation	Effective Constraints	Non-Relativistic Particle	Outlook

Effective Constraints for Quantum Systems

Artur Tsobanjan

work with M. Bojowald, B. Sandhöfer and A. Skirzewski

IGC, Penn State

¹arXiv:0804.3365, published in Rev. Math. Phys. arXiv:0906.1772, submitted to Phys. Rev. D.

- $\bullet\,$ Classically constraints are conditions on phase-space $\Gamma_{\rm class}$
 - arise directly from the action principle
 - parts of $\Gamma_{\rm class}$ are unaccessible
 - $\bullet\,$ some distinct points of $\Gamma_{\rm class}$ are physically equivalent
- Canonical quantization generally has to be modified for constraints -there is a number of methods with limited applicability
- "Effective" scheme for semiclassical states
 - $\bullet\,$ enlarge $\Gamma_{\rm class}$ to $\Gamma_{\rm Q}$ adding leading order quantum parameters
 - formulate constraints for extra variables on $\Gamma_{\rm Q}$
 - analyze the enlarged system as classical

Introduction

Why care about constrained systems?

- In short—general relativity is a constrained system
- Example: hamiltonian formulation (Arnowitt-Deser-Misner)
 - h_{ab} 3-metric and its conjugate momentum π^{ab}
 - constraints have the form (appendix of Wald's book)

$$\frac{(16\pi G)^2}{\det h} \left(\pi^{ab} \pi_{ab} - \frac{1}{2} \pi^a_{\ a} \right) - {}^{(3)} \mathbf{R} = \mathbf{0}$$
$$D_a \left(\frac{\pi^{ab}}{\sqrt{\det h}} \right) = \mathbf{0}$$

• Symmetry reduced cosmological models are also constrained e.g. flat FRW universe scale factor *a*, conjugate momentum *p*_a

$$\frac{-2\pi G}{3}\frac{p_a^2}{a}+\mathscr{E}(a,p_a)=0$$

Quantizing constraints

- Classically follow Dirac-Bergmann algorithm
 - solve constraints-restrict to region where they vanish
 - factor out gauge orbits
 - $\bullet\,$ result: reduced phase-space $\Gamma_{\rm red}$
- $\Gamma_{\rm red}$ generally not a cotangent bundle—no distinction between "configuration" and "momentum" variables \rightarrow ordinary quantization is undefined
- Avoid this problem using Dirac's prescription
 - quantize the free system
 - promote constraints to operators $\hat{\mathcal{C}}_i$
 - impose $\hat{\mathcal{C}}_{\mathrm{i}} |\psi_{\mathrm{phys}}
 angle = 0$ \leftarrow difficult!
- Exact implementations available only for special cases, cannot be perturbed directly

Introduction

Motivation

Effective Constraints

Non-Relativistic Partic

Outlook

What "quantum parameters"?

- Quantum state of a particle in N-dimensions can be described by
 - 2N expectation values $\langle \hat{x}_{\mathrm{i}}
 angle$, $\langle \hat{p}_{\mathrm{i}}
 angle$
 - ∞ number of "moments" $\langle (\hat{x}_1 - \langle \hat{x}_1 \rangle)^{n_1} \dots (\hat{x}_N - \langle \hat{x}_N \rangle)^{n_N} (\hat{p}_1 - \langle \hat{p}_1 \rangle)^{m_1} \dots (\hat{p}_N - \langle \hat{p}_N \rangle)^{m_N} \rangle_{_{Wevl}}$

• For example $\langle (\hat{x}_i - \langle \hat{x}_i \rangle)^2 \rangle$ is the squared spread of the wave-function

e.g. a Gaussian

- For semiclassical wave-functions "moments" $\propto \hbar^{\frac{1}{2}(\sum n_i+m_i)}$ \longrightarrow take lower order moments as "quantum parameters"
- Can be generalized to other quantum-mechanical systems

ntroduction

Motivation

How do these parameters fit into Γ_Q ?

 $\bullet~\Gamma_{\rm class}$ comes with a Poisson bracket, crucial for dynamics

$$\frac{\mathrm{d}}{\mathrm{d}t}O = \{O, H\} + \frac{\partial}{\partial t}O$$

 $\bullet\,$ Poisson structure on $\Gamma_{\rm Q}$ inspired by Ehrenfest's theorem

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle\hat{O}\rangle = \frac{1}{i\hbar}\left\langle\left[\hat{O},\hat{H}\right]\right\rangle + \frac{\partial}{\partial t}\langle\hat{O}\rangle$$

- Define $\left\{ \langle \hat{A} \rangle, \langle \hat{B} \rangle \right\} := \frac{1}{i\hbar} \left\langle \left[\hat{A}, \hat{B} \right] \right\rangle$ brackets for moments follow from linearity and Leibnitz rule
- $\langle \hat{H} \rangle$ generates quantum evolution, Schrödinger equation takes the form

$$\frac{\mathrm{d}}{\mathrm{d}t}X = \left\{X, \langle \hat{H} \rangle\right\} \rightarrow \ \infty \ \text{number of coupled ODE} - \mathrm{s}$$

Implementing Dirac's prescription

- Physical states must satisfy $\hat{\mathcal{C}}|\psi
 angle=0$
- It follows $\langle \psi | \hat{C} | \psi \rangle = 0$ \rightarrow easy to enforce on quantum variables via $\langle \hat{C} \rangle = 0$
- Further, this implies $\langle \phi | \hat{C} | \psi \rangle = 0$, $\forall | \phi \rangle$. Involves two different states—not expressible in terms of moments directly
- For normalizable $|\psi\rangle$ and $|\phi\rangle$ there is some \hat{A} s.t. $\langle\phi| = \langle\psi|\hat{A}\rangle$
- So we demand for all operators \hat{A} polynomial in the basic observables

$$\langle \hat{A}\hat{C} \rangle = 0$$

Introduction

Motivation

Effective Constraints

Non-Relativistic Particle

Outlook

Example: Newtonian Particle

- Free system two canonical pairs {x̂, p̂; t̂, p̂_t}, subject to [x̂, p̂] = iħ = [t̂, p̂_t]
- Observables constructed from polynomials in these basic elements
- Constraint has the form $\hat{C} = \hat{p}_t + \frac{\hat{p}^2}{2M} + V(\hat{x})$
- Systematically impose constraints order by order:

$$\left\langle \hat{x}^{k}\hat{p}^{\prime}\hat{t}^{m}\hat{p}_{t}^{n}\hat{C}
ight
angle =0$$

• Infinitely many conditions—assume semiclassical state and truncate at some power of $\hbar^{\frac{1}{2}}$

Corrections of order \hbar

- Degrees of freedom: 4 expectation values $a = \langle \hat{a} \rangle$; 4 spreads $(\Delta a)^2 = \langle (\hat{a} a)^2 \rangle$ and 6 covariances $\Delta(ab) = \langle (\hat{a} a)(\hat{b} b) \rangle_{Weyl}$
- 5 non-trivial constraints left:

$$\begin{split} \langle \hat{C} \rangle &= p_t + \frac{p^2}{2M} + \frac{(\Delta \rho)^2}{2M} = 0; \quad \langle \hat{\rho}\hat{C} \rangle = \Delta(\rho p_t) + \frac{p(\Delta \rho)^2}{M} = 0; \quad \langle \hat{\rho}_t \hat{C} \rangle = (\Delta p_t)^2 + \frac{p\Delta(\rho p_t)}{M} = 0; \\ \langle \hat{x}\hat{C} \rangle &= \Delta(xp_t) + \frac{i\hbar\rho}{2M} + \frac{p\Delta(xp)}{M} = 0; \quad \langle \hat{t}\hat{C} \rangle = \frac{p\Delta(\rho t)}{M} + \Delta(tp_t) + \frac{i\hbar}{2} = 0. \end{split}$$

- Four gauge freedoms remain, fix 3 of them: $\Delta(tp) = 0; \quad \Delta(xt) = 0; \quad (\Delta t)^2 = 0$
- In this gauge, evolution is generated by $\frac{p^2}{2M} + \frac{(\Delta p)^2}{2M} = \left\langle \frac{\hat{p}^2}{2M} \right\rangle$

Introduction	Motivation	Effective Constraints	Non-Relativistic Particle	Outlook
Outlook				

• Constructed a method for deriving semiclassical corrections for constrained quantum systems

- Applied to Newtonian and relativistic particle in a potential
- Cosmological models are to be analyzed next