# Effective Constraints for Quantum Systems 

Artur Tsobanjan<br>work with M. Bojowald, B. Sandhöfer and A. Skirzewski<br>IGC, Penn State

${ }^{1}$ arXiv:0804.3365, published in Rev. Math. Phys. arXiv:0906.1772, submitted to Phys. Rev. D.

## Introduction

- Classically constraints are conditions on phase-space $\Gamma_{\text {class }}$
- arise directly from the action principle
- parts of $\Gamma_{\text {class }}$ are unaccessible
- some distinct points of $\Gamma_{\text {class }}$ are physically equivalent
- Canonical quantization generally has to be modified for constraints -there is a number of methods with limited applicability
- "Effective" scheme for semiclassical states
- enlarge $\Gamma_{\text {class }}$ to $\Gamma_{Q}$ adding leading order quantum parameters
- formulate constraints for extra variables on $\Gamma_{Q}$
- analyze the enlarged system as classical


## Why care about constrained systems?

- In short—general relativity is a constrained system
- Example: hamiltonian formulation (Arnowitt-Deser-Misner)
- $h_{a b}$-3-metric and its conjugate momentum $\pi^{a b}$
- constraints have the form (appendix of Wald's book)

$$
\begin{gathered}
\frac{(16 \pi G)^{2}}{\operatorname{det} h}\left(\pi^{a b} \pi_{a b}-\frac{1}{2} \pi_{a}^{a}\right)-{ }^{(3)} \mathrm{R}=0 \\
D_{a}\left(\frac{\pi^{a b}}{\sqrt{\operatorname{det} h}}\right)=0
\end{gathered}
$$

- Symmetry reduced cosmological models are also constrained e.g. flat FRW universe scale factor $a$, conjugate momentum $p_{a}$

$$
\frac{-2 \pi G}{3} \frac{p_{a}^{2}}{a}+\mathscr{E}\left(a, p_{a}\right)=0
$$

## Quantizing constraints

- Classically follow Dirac-Bergmann algorithm
- solve constraints-restrict to region where they vanish
- factor out gauge orbits
- result: reduced phase-space $\Gamma_{\text {red }}$
- $\Gamma_{\text {red }}$ generally not a cotangent bundle-no distinction between "configuration" and "momentum" variables
$\rightarrow$ ordinary quantization is undefined
- Avoid this problem using Dirac's prescription
- quantize the free system
- promote constraints to operators $\hat{C}_{\mathrm{i}}$
- impose $\hat{C}_{\mathrm{i}}\left|\psi_{\text {phys }}\right\rangle=0 \longleftarrow$ difficult!
- Exact implementations available only for special cases, cannot be perturbed directly


## What "quantum parameters"?

- Quantum state of a particle in $N$-dimensions can be described by
- $2 N$ expectation values $\left\langle\hat{x}_{\mathrm{i}}\right\rangle,\left\langle\hat{p}_{\mathrm{i}}\right\rangle$
- $\infty$ number of "moments"

$$
\left\langle\left(\hat{x}_{1}-\left\langle\hat{x}_{1}\right\rangle\right)^{n_{1}} \ldots\left(\hat{x}_{N}-\left\langle\hat{x}_{N}\right\rangle\right)^{n_{N}}\left(\hat{p}_{1}-\left\langle\hat{p}_{1}\right\rangle\right)^{m_{1}} \ldots\left(\hat{p}_{\mathrm{N}}-\left\langle\hat{p}_{\mathrm{N}}\right\rangle\right)^{m_{N}}\right\rangle_{\text {Weyl }}
$$

eq a Gaussian

- For example $\left\langle\left(\hat{x}_{i}-\left\langle\hat{x}_{i}\right\rangle\right)^{2}\right\rangle$ is the squared spread of the wave-function

- For semiclassical wave-functions "moments" $\propto \hbar^{\frac{1}{2}\left(\sum n_{i}+m_{i}\right)}$ $\longrightarrow$ take lower order moments as "quantum parameters"
- Can be generalized to other quantum-mechanical systems


## How do these parameters fit into $\Gamma_{Q}$ ?

- $\Gamma_{\text {class }}$ comes with a Poisson bracket, crucial for dynamics

$$
\frac{\mathrm{d}}{\mathrm{~d} t} O=\{O, H\}+\frac{\partial}{\partial t} O
$$

- Poisson structure on $\Gamma_{\mathrm{Q}}$ inspired by Ehrenfest's theorem

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\langle\hat{O}\rangle=\frac{1}{i \hbar}\langle[\hat{O}, \hat{H}]\rangle+\frac{\partial}{\partial t}\langle\hat{O}\rangle
$$

- Define $\{\langle\hat{A}\rangle,\langle\hat{B}\rangle\}:=\frac{1}{\hbar \hbar}\langle[\hat{A}, \hat{B}]\rangle$
brackets for moments follow from linearity and Leibnitz rule
- $\langle\hat{H}\rangle$ generates quantum evolution, Schrödinger equation takes the form

$$
\frac{\mathrm{d}}{\mathrm{~d} t} X=\{X,\langle\hat{H}\rangle\} \rightarrow \infty \text { number of coupled ODE }-\mathrm{s}
$$

## Implementing Dirac's prescription

- Physical states must satisfy $\hat{C}|\psi\rangle=0$
- It follows $\langle\psi| \hat{C}|\psi\rangle=0$
$\rightarrow$ easy to enforce on quantum variables via $\langle\hat{C}\rangle=0$
- Further, this implies $\langle\phi| \hat{C}|\psi\rangle=0, \forall|\phi\rangle$. Involves two different states-not expressible in terms of moments directly
- For normalizable $|\psi\rangle$ and $|\phi\rangle$ there is some $\hat{A}$ s.t. $\langle\phi|=\langle\psi| \hat{A}$
- So we demand for all operators $\hat{A}$ polynomial in the basic observables

$$
\langle\hat{A} \hat{C}\rangle=0
$$

## Example: Newtonian Particle

- Free system two canonical pairs $\left\{\hat{x}, \hat{p} ; \hat{t}, \hat{p}_{t}\right\}$, subject to $[\hat{x}, \hat{p}]=i \hbar=\left[\hat{t}, \hat{p}_{t}\right]$
- Observables constructed from polynomials in these basic elements
- Constraint has the form $\hat{C}=\hat{p}_{t}+\frac{\hat{p}^{2}}{2 M}+V(\hat{x})$
- Systematically impose constraints order by order:

$$
\left\langle\hat{x}^{k} \hat{p}^{\prime} \hat{t}^{m} \hat{p}_{t}^{n} \hat{C}\right\rangle=0
$$

- Infinitely many conditions-assume semiclassical state and truncate at some power of $\hbar^{\frac{1}{2}}$


## Corrections of order $\hbar$

- Degrees of freedom: 4 expectation values $a=\langle\hat{a}\rangle ; 4$ spreads $(\Delta a)^{2}=\left\langle(\hat{a}-a)^{2}\right\rangle$ and 6 covariances $\Delta(a b)=\langle(\hat{a}-a)(\hat{b}-b)\rangle_{\text {Weyl }}$
- 5 non-trivial constraints left:

$$
\begin{aligned}
& \langle\hat{C}\rangle=p_{t}+\frac{p^{2}}{2 M}+\frac{(\Delta p)^{2}}{2 M}=0 ; \quad\langle\hat{p} \hat{C}\rangle=\Delta\left(p p_{t}\right)+\frac{p(\Delta p)^{2}}{M}=0 ; \quad\left\langle\hat{p}_{t} \hat{C}\right\rangle=\left(\Delta p_{t}\right)^{2}+\frac{p \Delta\left(p p_{t}\right)}{M}=0 ; \\
& \langle\hat{x} \hat{C}\rangle=\Delta\left(x p_{t}\right)+\frac{i \hbar p}{2 M}+\frac{p \Delta(x p)}{M}=0 ; \quad\langle\hat{t} \hat{C}\rangle=\frac{p \Delta(p t)}{M}+\Delta\left(t p_{t}\right)+\frac{i \hbar}{2}=0 .
\end{aligned}
$$

- Four gauge freedoms remain, fix 3 of them:

$$
\Delta(t p)=0 ; \quad \Delta(x t)=0 ; \quad(\Delta t)^{2}=0
$$

- In this gauge, evolution is generated by $\frac{p^{2}}{2 M}+\frac{(\Delta p)^{2}}{2 M}=\left\langle\frac{\hat{\rho}^{2}}{2 M}\right\rangle$


## Outlook

- Constructed a method for deriving semiclassical corrections for constrained quantum systems
- Applied to Newtonian and relativistic particle in a potential
- Cosmological models are to be analyzed next

