Motivations Results Derivations

Effective Four-Dimensional Actions in Braneworld Scenarios

Jolyon Bloomfield

Supervised by Eanna Flanagan

Cornell University Physics Department

12th Eastern Gravity Meeting, 15th June 2009

Motivations Results

Motivations

Derivations

Motivations for looking at extra dimensions

- String Theory
- Dark Matter
- Dark Energy
- Particle Physics

Features of Randall-Sundrum Models

Two 4-dimensional "branes" floating in a 5-dimensional "bulk", compactified (orbifolded).

$$S = \int d^4x \int dy \sqrt{-g^{(5)}} \left\{ rac{R^{(5)}}{2\kappa^2} - \Lambda
ight\} + S_{
m branes}$$

- Separation of matter fields ("sequestering")
- Natural hierarchy
- Radion mode: scalar field
 - Fixed
 - Dynamical
 - Free?

Motivations	Features of RS Models
Results	Results
Derivations	Goal

Randall-Sundrum: Compactified

$$S = \int d^4x \int dy \sqrt{-g^{(5)}} \left\{ rac{R^{(5)}}{2\kappa^2} - \Lambda
ight\} + S_{ ext{branes}} + S_{ ext{matter}}$$

$$ds^2 = e^{-2k\Phi(x^\lambda)|y|}\gamma_{\mu
u}(x^\lambda)dx^\mu dx^
u + \Phi(x^\lambda)^2 dy^2$$

$$S^{(4)} = \int d^{4}\xi \sqrt{-g} \left[\frac{1}{2\kappa_{4}^{2}} R[g] - \frac{1}{2} (\nabla_{a}\psi) (\nabla^{a}\psi) \right]$$
$$+ S_{+}[g_{+\mu\nu}, \chi_{+}] + S_{-}[g_{-\mu\nu}, \chi_{-}]$$
$$g_{\mu\nu} = \left[e^{2k\Phi} - 1 \right] \gamma_{\mu\nu}$$
$$g_{-\mu\nu} = \sinh^{2} \left(\frac{\kappa_{4}\psi}{\sqrt{6}} \right) g_{\mu\nu}, \quad g_{+\mu\nu} = \cosh^{2} \left(\frac{\kappa_{4}\psi}{\sqrt{6}} \right) g_{\mu\nu}$$

 Motivations
 Features of RS Mode

 Results
 Results

 Derivations
 Goal

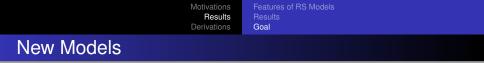
Uncompactified Case

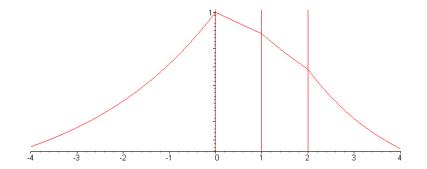
Two branes without compactification.

$$S = \int d^4x \int dy \sqrt{-g^{(5)}} \left\{ \frac{R^{(5)}}{2\kappa^2} - \Lambda \right\} + S_{\text{branes}} + S_{\text{matter}}$$
$$ds^2 = e^{2\Phi(x^\lambda)Q(y)}\gamma_{\mu\nu}(x^\lambda)dx^\mu dx^\nu + \Phi(x^\lambda)^2 dy^2$$

Plot of the warp factor Q(y)

Motivations Features of RS Mo Results Results Derivations Goal


Uncompactified Case


$$S^{(4)} = \int d^{4}\xi \sqrt{-g} \left\{ \frac{1}{2\kappa_{4}^{2}} R^{(4)}[g] - \frac{1}{2} (\nabla_{a}\psi) (\nabla^{a}\psi) \right\} \\ + S_{1}[g_{1\mu\nu}, \chi_{1}] + S_{0}[g_{0\mu\nu}, \chi_{0}]$$

$$g_{\mu\nu} = \left[1 - e^{-2k_2\Phi}\right]\gamma_{\mu\nu}$$
$$g_{0\ \mu\nu} = \hat{\kappa}\sinh^2\left(\frac{\kappa_4\psi}{\sqrt{6}}\right)g_{\mu\nu}, \quad g_{1\ \mu\nu} = \cosh^2\left(\frac{\kappa_4\psi}{\sqrt{6}}\right)g_{\mu\nu}$$

	Motivations Results Derivations	Features of RS Models Results Goal	
Goal			

To look for a consistent dynamical model with a scalar field which models the dynamics of dark energy and also addresses dark matter and/or the hierarchy problem

A class of models to investigate

Techniques to find 4-dimensional theories

- Classical field theory reduction from $5D \rightarrow 4D$
- Identify a regime in which a 4-dimensional effective theory is a reasonable approximation to the full 5-dimensional dynamics
- Consider the radius of curvature in our 4-dimensional world, compare it to the radius of curvature in the bulk (dominated by the cosmological constant in the bulk)
- Expand in ratio of lengthscales

$$\varepsilon = \frac{R_{Bulk}}{R_{4D}}$$

Techniques to find 4-dimensional theories

- Full 5D equations → linear/quadratic perturbations
- Full 5D equations \rightarrow projected onto 4D brane
- Direct computation of 4D action from 5D action by integrating out 5th dimension
 - General procedure
 - Requires full 5-D metric

Motivations Results Derivations Techniques Steps in My Method Areas to Investigate

Deriving the 4D Action

- Construct generalised coordinates in each region between branes
- Construct general metric based upon such coordinates (without any gauge assumptions)
- Scale brane coordinates x^α by ε (coordinates become (εx^α, y))
- Calculate 5-D action to lowest order in ε
- Minimise action to obtain metric ansatz in limit $\varepsilon \to 0$

Motivations Techniques Results Steps in My Method Derivations Areas to Investigate

Deriving the 4D Action

- Use this metric ansatz to calculate 5-D action to second order in ε
- Minimise second order action (zeroth order action is already minimised by ansatz, first order action is vanishing)
- Second order action contains Ricci scalar and radion fields
- Integrate over 5th dimension in action to obtain 4D effective theory
- Recast fields in Einstein conformal frame with canonical normalisation

$$S^{(4)} = \int d^{4}\xi \sqrt{-g} \left\{ \frac{1}{2\kappa_{4}^{2}} R^{(4)}[g] - \frac{1}{2} (\nabla_{a}\psi) (\nabla^{a}\psi) \right\} \\ + S_{1}[g_{1\mu\nu}, \chi_{1}] + S_{0}[g_{0\mu\nu}, \chi_{0}]$$

 Motivations
 Techniques

 Results
 Steps in My Method

 Derivations
 Areas to Investigate

Where to now?

- Calculate low-dimensional effective action in n brane case
- Understand how 5-D dynamics in ε → 1 regime of uncompactified models affect 4-D effective theory
- Investigate the situation of a black hole on a brane in this framework ($\varepsilon \rightarrow 1$ near the brane)
- Search for n-brane configurations with a region of parameter space useful for dark energy/dark matter

Summary

- Have classes of models which have features which can relate to dark matter, dark energy and the hierarchy problem
- Have a general method to calculate the physics of these models
- Have models to go and explore!