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Numerical Relativity can now merge black holes.

This presents the intriguing possibility of studying, in detail, the strong-field
nonlinear behavior of curved spacetime.

Much of this behavior can be expected to be encoded in quasilocal structures
on interacting black holes.

But in the strong-field regime, gauge ambiguity is very strong, and must be
understood and controlled.
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Example: spin angular momentum.

A reasonably well-developed formalism for computing spin angular
momentum has appeared over the last few years, beginning with the formula:

J =
1
8π

∮
H

φBωB dA,

where ωB is a connection on the normal bundle and φB is a suitably defined
“approximate Killing vector” of the apparent horizon H.

Can this be extended to other multipole moments?
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Ashtekar et al.:
gr-qc/0401114
CQG 21 2549 (2004)

It is natural to define Mass- and Current- multipoles on axisymmetric isolated
horizons as:

Iα :=
∮

H

yαR dA,

Lα :=
∮

H

yB
α ωB dA

(up to multiplicative factors), where R is the intrinsic scalar curvature of the
two-dimensional surface H, and yα and yA

α are scalar and vector spherical
harmonics, respectively.
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Spherical harmonics:

Ashtekar et al. made use of extra structure that appears in axisymmetry to
single out preferred coordinates in which these spherical harmonic projections
could be taken.

In general, this extra structure won’t exist.

So instead, we don’t introduce coordinates. We define the spherical
harmonics spectrally.

∆yα = λ(α)yα.

∆2zα + R∆zα +∇AR∇Azα = µ(α)∆zα,

where

yA
α := εAB∇Bzα.
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Pictures:

Kerr monopole harmonic:
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Pictures:

Kerr dipole harmonic 1:
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Pictures:

Kerr dipole harmonic 2:
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Pictures:

Kerr dipole harmonic 3:
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Pictures:

Kerr quadrupole harmonic 1:
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Pictures:

Kerr quadrupole harmonic 2:
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Pictures:

Kerr quadrupole harmonic 3:
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Pictures:

Kerr quadrupole harmonic 4:
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Pictures:

Kerr quadrupole harmonic 5:
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Pictures:

Kerr octupole harmonic 1:
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Initial common horizon of a BBH merger:

Monopole harmonic:
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Initial common horizon of a BBH merger:

Dipole harmonic 1:
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Initial common horizon of a BBH merger:

Dipole harmonic 2:
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Initial common horizon of a BBH merger:

Dipole harmonic 3:
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Initial common horizon of a BBH merger:

Quadrupole harmonic 1:
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Initial common horizon of a BBH merger:

Quadrupole harmonic 2:
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Initial common horizon of a BBH merger:

Quadrupole harmonic 3:
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Application:

These multipoles can be used to verify, in a (spatially) coordinate-invariant
manner, that the final remnant of a black hole merger is Kerr. (See also Yosef
Zlochower’s talk.)

Test case: ringdown after the merger of equal-mass, nonspinning, binary
black holes after sixteen orbits of noneccentric inspiral (the data discussed in
Scheel et al., arxiv:0810.1767, Phys.Rev.D 79 024003 (2009)).
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Spectrum:

“` = 1” scalar harmonics:
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Spectrum:

“` = 2” scalar harmonics:
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Spectrum:

“` = 1” vector harmonics:
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Multipoles:

Excited mass quadrupole moments:
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Multipoles:

Excited mass quadrupole moments:
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Multipoles:

Excited current octupole moments:
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Multipoles:

Excited mass hexadecupole moments:
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Another interesting result: quasinormal ringing.
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Another interesting result: quasinormal ringing.

Next session, Geoffrey Lovelace will discuss a merger that settles down to a
(kicked) Schwarzschild black hole. There is enough symmetry in this situation
that the harmonics can’t “rotate with the bulge,” so this allows a better picture
of the quasinormal oscillations.

31



Another interesting result: quasinormal ringing.

0 200 400 600 800
coordinate time

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

do
m

in
an

t m
as

s 
qu

ad
ru

po
le

 m
om

en
t

expectation from quasinormal ringing
computation from merger data

32



Another interesting result: quasinormal ringing.

0 200 400 600 800
coordinate time

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

do
m

in
an

t m
as

s 
oc

tu
po

le
 m

om
en

t
expectation from quasinormal ringing
computation from merger data

33
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Conclusions:

• The source multipole formalism of Ashtekar et al. (2004) can be extended
to nonaxisymmetric cases.

• The key to this generalization is a spectral definition of the spherical
harmonics.

• The black hole merger described in Scheel et al. (2008) indeed settles
down to a Kerr black hole, at least near the horizon.

• The quasinormal ringing of this dataset, as well as Lovelace’s kick dataset,
show remarkably fine agreement with results from perturbation theory,
despite the general arbitrariness of the time slicing.
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