Simulations of black hole-neutron star binaries: Influence of the Equation of State

M. Duez, F. Foucart, L. Kidder, S. Teukolsky

June 15, 2009

Outline

- Motivations
- Equations of state
 - Existing models
 - Numerical results in compact binaries

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Implementation
- Initial data
 - Formalism
 - Parameter Space
- Results
 - Inspiral and disruption
 - Disk Formation

Motivations

- What are the physical properties of the high-density matter at the core of a neutron star?
 - Different equations of state (EOS) model matter above nuclear density.
 - Variations in their predictions regarding the allowed mass range of neutron stars, the mass-radius relationship,...
 - Can mostly be studied through the behavior of compact astronomical objects.
- Simulations can help in predicting:
 - Impact of the EOS on gravitational waveforms: what will we learn from future detections of BH-NS mergers?
 - Differences in post-merger remnants : accretion disks, and prospects as progenitors of short-hard gamma-ray bursts (SGRB).

Nuclear Equations of State

- Degenerate neutron gas above nuclear density is described by a one-parameter EOS
- Composition and structure of the core of the star is unknown. Existing models include:
 - *ne⁻p* degenerate gas
 - Hyperons
 - Strange quark matter
 - Mesons
- Scarce experimental constraints → difficult to rule out any option.
- Gravitational wave signal from binary neutron stars and BHNS binaries could provide useful additional information.

Numerical results

Binary neutron stars

- Existing simulations study the influence of magnetic fields, the NS masses and the EOS.
- Read et al.: Parametrized EOS used to estimate the accuracy required in gravitational wave measurements to obtain new constraints.
- Baiotti et al.: Neglecting the thermal part of the EOS affects the evolution of the system (Time before collapse of hypermassive remnant to a BH).
- Kiuchi et al. : Use EOS based on nuclear theory at T = 0 (Akmal-Pandhalipande-Ravenhall), add a thermal term.
- Black hole-neutron stars binaries
 - All simulations : polytropes with $\Gamma = 2$.
 - Stars of different compactness with a nonspinning BH (Shibata et al.):

EOS in SpEC

- First method: EOS divided in a cold part and a thermal part.
- Cold part: polytrope.

$$P_{\text{cold}} = \kappa \rho^{\mathsf{\Gamma}}$$

 $\epsilon_{\text{cold}} = \frac{P_{\text{cold}}}{\rho(\mathsf{\Gamma}-1)}$

Thermal part:

$$egin{array}{rcl} \epsilon &=& \epsilon_{
m cold} + \epsilon_{
m th} \ P &=& P_{
m cold} + (\Gamma_{
m th} - 1)
ho \epsilon_{
m th} \end{array}$$

SpEC can also evolve fluids with more diverse EOS of the form

$$\epsilon = \epsilon(\rho, T, Y_e)$$
$$P = P(\rho, T, Y_e)$$

Improvements: EOS from nuclear theory, incorporate more microphysics,...

Initial Data: Parameter Space

- Equation of state: for polytropes, only the constant Γ and the compactness $C = \frac{M_{NS}}{R_{NS}}$ (or κ) are freely specifiable.
- BH spin (cf previous talk)
- BH mass, NS mass.
 - When using a polytropic fluid, only the mass ratio is actually relevant.
 - Here: $\frac{M_{BH}}{M_{NS}} = 3$ for all cases.
- Initial separation and velocities
 - Quasi-equilibrium formalism: initial velocities obtained by requiring quasi circular orbits.
 - Initial data remains slightly eccentric
 - Iterative procedure using the first few orbits of the evolution makes it possible to reduce the eccentricity.

• $d = 10M_{BH}$

Initial Data: Method

• Extended Conformal Thin Sandwich:

$$ds^{2} = -\alpha^{2}dt^{2} + \phi^{4}\gamma_{ij}(dx^{i} + \beta^{i}dt)(dx^{j} + \beta^{j}dt)$$

Constraints \rightarrow elliptic equations for ϕ , $\alpha \phi$ and β^i .

- Excised BH: boundary conditions impose that the excision surface is an apparent horizon in quasi-equilibrium, and fix the spin of the BH (Cook and Pfeiffer).
- Quasi-equilibrium configurations: $\partial_t \gamma_{ij} = 0$, $\partial_t K = 0$.
- ► Hydrostatic equilibrium, irrotational configuration of the fluid → elliptic equation for a velocity potential.
- K and γ_{ij} ∼ Kerr close to the BH, flat space otherwise (Lovelace et al.).
- The elliptic equations are solved using Spells (Pfeiffer et al.) within an iterative solver driving the system to the desired configuration (Foucart et al.).

Initial Data: Evolved Binaries

Binary	Γ _{EOS}	$\frac{R_{NS}}{M_{NS}}$	S _{BH}
G2C15S0	2.0	0.15	0.0
G2C15S5	2.0	0.15	0.5
G275C15S5	2.75	0.15	0.5
G275C25S5	2.75	0.25	0.5

Initial configuration for stars with $\Gamma_{EOS}=2$ (left) and $\Gamma_{EOS}=2.75$ (right)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Inspiral and Disruption

The disruption point is defined by q = 0.5, where

$$q = rac{Q_{aa} - Q_{bb}}{Q_{aa} + Q_{bb}}$$

and the Q_{ij} are the second moments of the density:

$$Q_{ij}=\int
ho x_i x_j dV.$$

The axes *a*, *b* are chosen so that $Q_{ab} = 0$.

(日)、

э

Binary	T _{disrupt} M _{BH}	d _{disrupt} M _{BH}	N _{orbits}
G2C15S0	318	5.4	2.1
G2C15S5	498	5.3	3.2
G275C15S5	420	5.8	2.7
G275C25S5	485	4.7	3.1

Merger and Disk formation

Binary	T _{disrupt} M _{BH}	$\frac{T_{50\%}}{M_{BH}}$	M_{disk}/M_{NS}	$T_{disk}(MeV)$
G2C15S5	498	564	0.15	2
G275C15S5	420	497	0.17	2
G275C25S5	485	524	0.05	3

Disk formation for the G275C15S5 binary: equatorial plane $(T = 765M, R \sim 300 km)$

Disk formation for the G275C15S5 binary: transverse plane $(H \sim 100 km)$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Summary

- Evolved BH-NS binaries through their late inspiral, disruption, and disk formation phases while varying the BH spin, the star compactness, and the stiffness of the EOS.
- The inspiral rate seems dominated by the effect of the BH spin, with little influence from the actual composition of the star.
- The disruption point varies with the stiffness and the compactness of the star, but doesn't seem to be impacted by the spin of the BH.
- The resulting accretion disk depends mostly on the spin of the BH and the compactness of the star.
- The first two effects will induce different waveforms (rate of change of the wavelength, cut-off frequency), while the third is more relevant to our understanding of SGRB.