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Motivations

I What are the physical properties of the high-density matter at
the core of a neutron star?

I Different equations of state (EOS) model matter above nuclear
density.

I Variations in their predictions regarding the allowed mass
range of neutron stars, the mass-radius relationship,...

I Can mostly be studied through the behavior of compact
astronomical objects.

I Simulations can help in predicting:
I Impact of the EOS on gravitational waveforms: what will we

learn from future detections of BH-NS mergers?
I Differences in post-merger remnants : accretion disks, and

prospects as progenitors of short-hard gamma-ray bursts
(SGRB).



Nuclear Equations of State

I Degenerate neutron gas above nuclear density is described by
a one-parameter EOS

I Composition and structure of the core of the star is unknown.
Existing models include:

I ne−p degenerate gas
I Hyperons
I Strange quark matter
I Mesons

I Scarce experimental constraints → difficult to rule out any
option.

I Gravitational wave signal from binary neutron stars and BHNS
binaries could provide useful additional information.



Numerical results

I Binary neutron stars
I Existing simulations study the influence of magnetic fields, the

NS masses and the EOS.
I Read et al.: Parametrized EOS used to estimate the accuracy

required in gravitational wave measurements to obtain new
constraints.

I Baiotti et al.: Neglecting the thermal part of the EOS affects
the evolution of the system (Time before collapse of
hypermassive remnant to a BH).

I Kiuchi et al. : Use EOS based on nuclear theory at T = 0
(Akmal-Pandhalipande-Ravenhall), add a thermal term.

I Black hole-neutron stars binaries
I All simulations : polytropes with Γ = 2.
I Stars of different compactness with a nonspinning BH (Shibata

et al.):



EOS in SpEC

I First method: EOS divided in a cold part and a thermal part.

I Cold part: polytrope.

Pcold = κρΓ

εcold = Pcold
ρ(Γ−1)

I Thermal part:

ε = εcold + εth

P = Pcold + (Γth − 1)ρεth

I SpEC can also evolve fluids with more diverse EOS of the form

ε = ε(ρ,T ,Ye)

P = P(ρ,T ,Ye)

I Improvements: EOS from nuclear theory, incorporate more
microphysics,...



Initial Data: Parameter Space

I Equation of state: for polytropes, only the constant Γ and the
compactness C = MNS

RNS
(or κ) are freely specifiable.

I BH spin (cf previous talk)
I BH mass, NS mass.

I When using a polytropic fluid, only the mass ratio is actually
relevant.

I Here: MBH

MNS
= 3 for all cases.

I Initial separation and velocities
I Quasi-equilibrium formalism: initial velocities obtained by

requiring quasi circular orbits.
I Initial data remains slightly eccentric

I Iterative procedure using the first few orbits of the evolution
makes it possible to reduce the eccentricity.

I d = 10MBH



Initial Data: Method

I Extended Conformal Thin Sandwich:

ds2 = −α2dt2 + φ4γij(dx i + βidt)(dx j + βjdt)

Constraints → elliptic equations for φ, αφ and βi .

I Excised BH: boundary conditions impose that the excision
surface is an apparent horizon in quasi-equilibrium, and fix the
spin of the BH (Cook and Pfeiffer).

I Quasi-equilibrium configurations: ∂tγij = 0, ∂tK = 0.

I Hydrostatic equilibrium, irrotational configuration of the fluid
→ elliptic equation for a velocity potential.

I K and γij ∼ Kerr close to the BH, flat space otherwise
(Lovelace et al.).

I The elliptic equations are solved using Spells (Pfeiffer et al.)
within an iterative solver driving the system to the desired
configuration (Foucart et al.).



Initial Data: Evolved Binaries

Binary ΓEOS
RNS
MNS

SBH

G2C15S0 2.0 0.15 0.0
G2C15S5 2.0 0.15 0.5

G275C15S5 2.75 0.15 0.5
G275C25S5 2.75 0.25 0.5

Initial configuration for stars with ΓEOS = 2 (left) and ΓEOS = 2.75
(right)



Inspiral and Disruption

The disruption point is defined
by q = 0.5, where

q =
Qaa − Qbb

Qaa + Qbb

and the Qij are the second
moments of the density:

Qij =

∫
ρxixjdV .

The axes a, b are chosen so
that Qab = 0.

Binary
Tdisrupt

MBH

ddisrupt

MBH
Norbits

G2C15S0 318 5.4 2.1
G2C15S5 498 5.3 3.2

G275C15S5 420 5.8 2.7
G275C25S5 485 4.7 3.1

4 5 6 7 8 9 10
d (MBH)

0

0.2

0.4

0.6

0.8

(Q
aa

-Q
bb

)/(
Q

aa
+Q

bb
)

G=2       C=0.15  S=0.5
G=2.75  C=0.15  S=0.5
G=2.75  C=0.25  S=0.5
G=2       C=0.15  S=0.0



Merger and Disk formation

Binary
Tdisrupt

MBH

T50%
MBH

Mdisk/MNS Tdisk(MeV )

G2C15S5 498 564 0.15 2
G275C15S5 420 497 0.17 2
G275C25S5 485 524 0.05 3
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Disk formation for the
G275C15S5 binary:
transverse plane
(H ∼ 100km)



Summary

I Evolved BH-NS binaries through their late inspiral, disruption,
and disk formation phases while varying the BH spin, the star
compactness, and the stiffness of the EOS.

I The inspiral rate seems dominated by the effect of the BH
spin, with little influence from the actual composition of the
star.

I The disruption point varies with the stiffness and the
compactness of the star, but doesn’t seem to be impacted by
the spin of the BH.

I The resulting accretion disk depends mostly on the spin of the
BH and the compactness of the star.

I The first two effects will induce different waveforms (rate of
change of the wavelength, cut-off frequency), while the third
is more relevant to our understanding of SGRB.


