

The Search for Low Mass Compact Binary Coalescences in LIGO's S5 Data

Collin Capano Syracuse University On behalf of the LIGO Scientific Collaboration

LIGO VIRGO

LIGO

\Rightarrow 4k and 2k at Hanford, WA

⇒4k at Livingston, LA

Virgo
 ⇒ 3k at Cascina, Italy
 MVIRGO

The LIGO S5 & Virgo VSR1 Science Runs

- LIGO S5 Science run
 - ⇒November 2005 October 2007
- Virgo VSR1 science run coincided with last 5 months
- Multiple searches done
 - ⇒Compact Binary Coalescence (CBC)
 - Low Mass

 $\Rightarrow 2M_{\odot} \le M_{TOTAL} \le 35M_{\odot} \text{ (with } M_{COMP} \ge 1M_{\odot} \text{)}$

High Mass

 $\Rightarrow 25 M_{\odot} \le M_{TOTAL} \le 100 M_{\odot}$

GRB triggered

⇒ Others: Burst, Stochastic, Continuous Wave

The LIGO S5 & Virgo VSR1 Science Runs

- LIGO S5 Science run
 - ⇒November 2005 October 2007
- Virgo VSR1 science run coincided with last 5 months
- Multiple searches done
 - ⇒Compact Binary Coalescence (CBC)
 - Low Mass

 $\Rightarrow 2M_{\odot} \le M_{TOTAL} \le 35M_{\odot} \text{ (with } M_{COMP} \ge 1M_{\odot} \text{)}$

High Mass

 $\Rightarrow 25 M_{\odot} \le M_{TOTAL} \le 100 M_{\odot}$

GRB triggered

⇒ Others: Burst, Stochastic, Continuous Wave

CBC Low Mass Searches

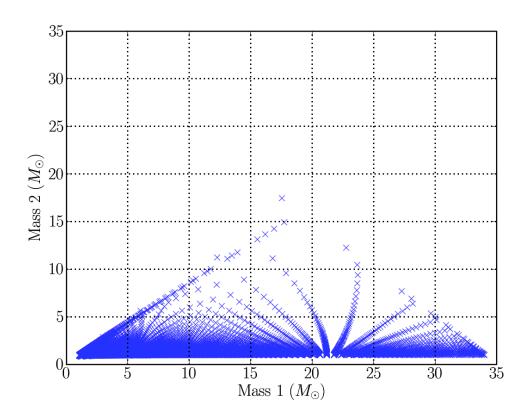
- S5 1st year: November 2005 November 2006
 ⇒ 0.40 years of coincident data
 - ⇒ Paper available
 - PRD 79, 122001 (2009)
- *S5 12-18 Month Search:* November 2006 May 2007
 - \Rightarrow 0.25 years of coincident data
 - ⇒ Increased sensitivity
 - \Rightarrow Paper now available (arXiv:0905.3710)
- Joint S5-VSR1: May 2007 October 2008
 ⇒ Paper in the works

CBC Low Mass Searches

S5 1st year: November 2005 - November 2006

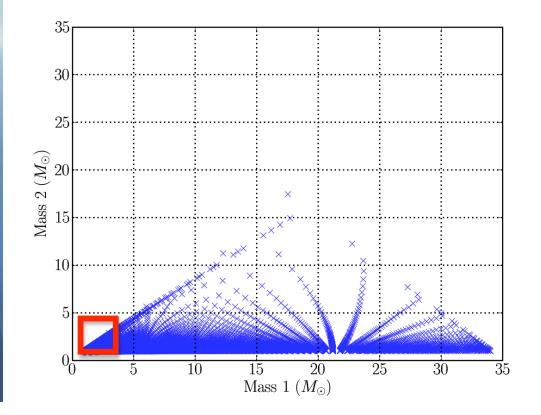
 ⇒ 0.40 years of coincident data
 ⇒ Paper available

 PRD 79, 122001 (2009)


 S5 12-18 Month Search: November 2006 - May 2007
 ⇒ 0.25 years of coincident data
 ⇒ Increased sensitivity
 ⇒ Paper now available (arXiv:0905.3710)

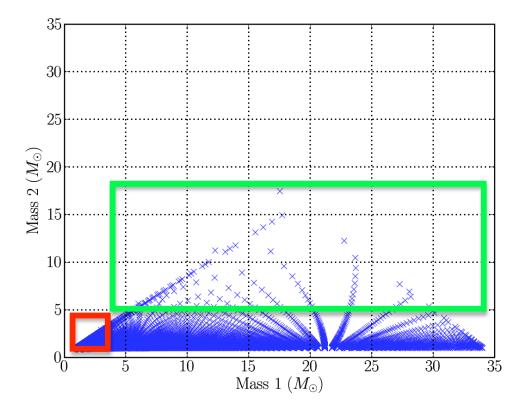
Joint S5-VSR1: May 2007 - October 2008
 ⇒ Paper in the works

- Similar to S5 1st Year Search
- Match filter with 2nd Order PN SPA template bank



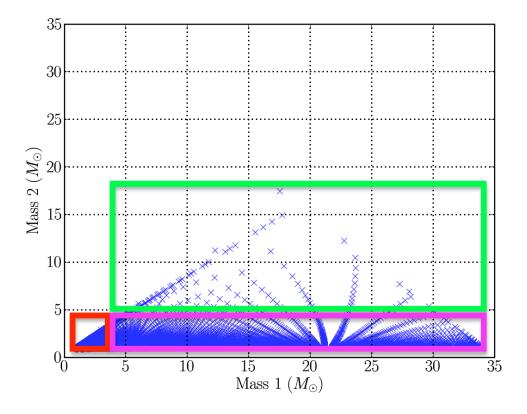
- Similar to S5 1st Year Search
- Match filter with 2nd Order PN SPA template bank

BNS

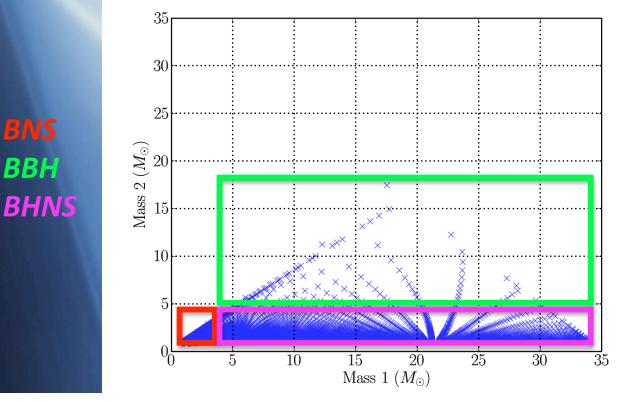


- Similar to S5 1st Year Search
- Match filter with 2nd Order PN SPA template bank

BNS BBH



- Similar to S5 1st Year Search
- Match filter with 2nd Order PN SPA template bank


BNS BBH BHNS

- Similar to S5 1st Year Search
- Match filter with 2nd Order PN SPA template bank
- Perform coincidence test between detectors

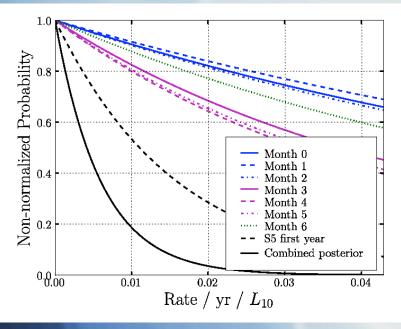
- Differences
 - ⇒ Search was divided into 7 "months"
 - Better background estimation
 - ⇒Analysis more automated
 - Step toward more low latency analysis in the future
- Each month searched individually for gravitational wave candidates...

The Result?

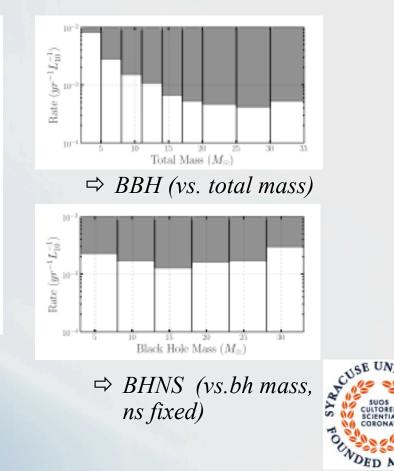
- No detection made
- Loudest trigger had a false alarm rate of ~6 year⁽⁻¹⁾
 ⇒ Consistent with background

12-18 Month Results

Set upper limits on coalescence rates
 ⇒ Calculate efficiency of detectors with injections
 ⇒ Use uniform prior for each month
 ⇒ Combine in a Bayesian manner using posterior rates from 1st year search


Quoted in units of L₁₀⁽⁻¹⁾ yr⁽⁻¹⁾
 ⇒ 1 L₁₀ is 10¹⁰ times the blue light solar luminosity
 ⇒ Milky Way contains ~ 1.7 L₁₀

12-18 Month Results


UL Posteriors

 $\Rightarrow BNS$

All plots at 90% confidence level

ULs by mass bin

Rate Comparisons

=

=

Our results vs. Astrophysical Estimates (at 90% confidence):

- BNS (1.35,1.35)M_☉ = $1.4 \times 10^{(-2)} L_{10}^{(-1)} yr^{(-1)}$ $\Rightarrow Astr'phys. Optimistic = 5 \times 10^{(-4)} L_{10}^{(-1)} yr^{(-1)}$ $\Rightarrow Astr'phys. Best Est. = 5 \times 10^{(-5)} L_{10}^{(-1)} yr^{(-1)}$
- BBH (5.0, 5.0)M_☉
 =

 ⇒ Astr'phys. Optimistic
 =

 ⇒ Astr'phys. Best Est.
 =
- BHNS (5.0, 1.35)M_☉
 ⇒ Astr'phys. Optimistic
 ⇒ Astr'phys. Best Est.

7.3 x 10⁽⁻⁴⁾ $L_{10}^{(-1)}yr^{(-1)}$ 6 x 10⁽⁻⁵⁾ $L_{10}^{(-1)}yr^{(-1)}$ 4 x 10⁽⁻⁷⁾ $L_{10}^{(-1)}yr^{(-1)}$

 $\begin{array}{c} \textbf{3.6 x 10^{(-3)} L_{10}^{(-1)} yr^{(-1)}} \\ \textbf{6 x 10^{(-5)} L_{10}^{(-1)} yr^{(-1)}} \\ \textbf{2 x 10^{(-6)} L_{10}^{(-1)} yr^{(-1)}} \end{array}$

What's next

This Year

⇒LIGO-Virgo S5 low mass results

 \Rightarrow LIGO S6 run, with improved sensitivity.

⇒Virgo VSR2, with improved sensitivity.


2014

⇒ Advanced LIGO begins operation

 \Rightarrow ~10x improvement in sensitivity = ~1000x volume

Based on Astrophysical rates, detections expected!

Extra: Background Estimation

- We time-slide the data between the two LIGO sites and look for coincidences
- Any time-slid coincident events cannot be from a true signal
- After performing 100 time-slides we can get a False Alarm Rate (FAR), for different types of triggers and IFO times
 We bin by mass range and detector combinations (e.g., H1L1, H1H2L1) when computing
- Using the FAR allows us to compare foreground triggers from different categories.