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Testing GR in the strong-field

◮ Observations of black holes are probing into the strong-field
regime.

◮ Orbits around Sgr A*
◮ Spectrum of accretion disks
◮ Pulsar timing (pulsar-BH binary)
◮ Gravitational waves

◮ We need a phenomenological formulation of strong-field
gravity tests.

◮ For weak-field tests, we have the PPN formalism.
◮ We want to construct a null experiment - define a set of

parameters such that for GR, they are zero.
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Why study bumpy black holes?

◮ Black holes provide a special opportunity to test GR thanks to
the no-hair theorem.

◮ The spacetime of a black hole is only a function of mass M

and spin a.
◮ The mass moments Ml and mass current moments Sl are

related by Ml + iSl = M(ia)l .

◮ We need a framework for testing this, i.e. a black hole with
“wrong” moments.

◮ Our proposal is to measure whether the deviation of black
hole multipoles is zero.
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Building bumpy black holes
Calculating precession frequencies

Starting point: The Weyl solution

The Weyl solution is a general stationary, axisymmetric metric:

ds2 = −e2ψdt2 + e2γ−2ψ
(

dρ2 + dz2
)

+e−2ψρ2dφ2 .

We can put this in the form of the Schwarzschild metric for

ρ = r sin θ
√

1 − 2M
r

, z = (r − M) cos θ, and

ψ =
1

2
ln

(

1 −
2M

r

)

,

γ = −
1

2
ln

(

1 +
M2 sin2 θ

r2 − 2Mr

)

.
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Building bumpy black holes
Calculating precession frequencies

Perturbing the Schwarzschild metric

Let ψ = ψ0 + ψ1, γ = γ0 + γ1. Define ψ0 and γ0 so that if ψ1 = 0
and γ1 = 0, we have the Schwarzschild metric:

ds2 = −e2ψ1

(

1 −
2M

r

)

dt2 + e2γ1−2ψ1

(

1 −
2M

r

)−1

dr2

+e2γ1−2ψ1r2dθ2 + e−2ψ1r2 sin2 θdφ2 .

To first order in ψ1 and γ1, the metric must satisfy the vacuum
Einstein equations:

∂2ψ1

∂ρ2 + 1
ρ
∂ψ1

∂ρ
+ ∂2ψ1

∂z2 = 0 (Laplace’s equation)

γ1 = f (ψ1, ψ0, γ0)
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Building bumpy black holes
Calculating precession frequencies

Previous work: Collins and Hughes (2004)

Introduced the idea of perturbing a black hole instead of allowing
for arbitrary higher moments

Looked at the effect of perturbations corresponding in the
weak-field to a ring of mass and point masses at the poles

Limitations:

◮ It only looks at equatorial orbits and perturbations to
Schwarzschild.

◮ The perturbation is not smooth, and calculating it requires
performing numerical integrals.
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Building bumpy black holes
Calculating precession frequencies

Our approach

Consider smooth perturbations.
Since ψ1 must solve Laplace’s equation in Weyl coordinates,
we choose to look at perturbations for which ψ1 is a
spherical harmonic.

Consider a larger class of orbits and spacetimes:
Consider inclined orbits.
Create a way of adding a perturbation to Kerr.

The bumps cause changes in the geodesics, which we can measure
by looking at precession frequencies.
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Building bumpy black holes
Calculating precession frequencies

Precession from the perturbation

We have three ways of calculating changes in precession
frequencies:

◮ Numerical simulations

◮ Action-angle variables

◮ Canonical perturbation theory
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Action-angle variables and canonical perturbation theory

In action-angle formalism, periodic motion is described using angle
variables wi and action variables Ji ≡

∮

pi dqi .

The frequency of oscillation is given by ωi ≡ 2π ∂H
∂Ji

where H is the
Hamiltonian.

For a perturbed Hamiltonian H + ∆H, to leading order the change

in the frequency is ∆ωi = 2π ∂∆H
∂Ji

∣

∣

∣

0
.
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Orbits in a bumpy Schwarzschild spacetime
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Orbits in a bumpy Schwarzschild spacetime
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Defining bumpy Kerr black holes
Precession due to the perturbation

Previous work: Glampedakis and Babak (2006)

Defines a ‘quasi-Kerr’ field
Consider deviation in the quadrupole moment: Q = QK − ǫM3

Quasi-Kerr metric: gµν = gK
µν + ǫhµν

Uses action-angle formalism to calculate frequencies
Quasi-Kerr field has Hamiltonian H ≡ H0 + ǫH1

New frequencies ω̂i ≡
∂H

∂Ĵi

Limitations:

◮ Only considers deviation from the quadrupole moment

◮ Equations of motion are only separable for equatorial orbits
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Defining bumpy Kerr black holes
Precession due to the perturbation

From bumpy Schwarzschild to bumpy Kerr

Newman-Janis algorithm is a “rotation” in configuration space
that transforms the Schwarzschild metric to the Kerr metric.

Applying the Newman-Janis algorithm to a bumpy Schwarzschild
metric generates a bumpy Kerr metric.

We can use canonical perturbation theory to calculate the
precession for this spacetime.
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Defining bumpy Kerr black holes
Precession due to the perturbation

Bumpy Kerr metric

ds2 = −e2ψ1
(

1 − 2Mr
Σ

)

dt2 − (eγ1 − 1)4a2Mr sin2 θ
∆Σ dt dr

− e−2ψ1−γ1 4aMr sin2 θ
Σ dt dφ+ e2γ1−2ψ1 Σ

∆dr2

+ (eγ1 − 1)2a sin2 θ
Σ∆

[

(r2 + a2)2 − ∆a2 sin2 θ
]

dr dφ

+ e2γ1−2ψ1Σ dθ2

+
[

e−2ψ1 sin2 θ
Σ

[

(r2 + a2)2 − ∆a2 sin2 θ
]

+(eγ1 − 1)8a2M2r2 sin4 θ
Σ(Σ−2Mr)

]

dφ2

where Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2
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Defining bumpy Kerr black holes
Precession due to the perturbation

Orbits in a bumpy Kerr spacetime
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Conclusions

◮ We need to construct a null experiment to test gravity in the
strong-field regime.

◮ Bumpy black holes let us test the no-hair theorem by
changing the mass moments.

◮ These perturbations change the precession frequencies of
geodesics.

◮ We can analytically calculate the effect of these perturbations
using canonical perturbation theory.
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