THE INTERNAL SPIN ANGULAR MOMENTUM OF AN ASYMPTOTICALLY FLAT SPACETIME

Andrew Randono
IGC, Penn State University

The Question

The Question

- Suppose a spinor falls into a blackhole
- Field is hidden behind horizon (spin measured by external fields)
- Charge neutral (neutrino)--No long range couplings except gravity

The Question

- Suppose a spinor falls into a blackhole
- Field is hidden behind horizon (spin measured by external fields)
- Charge neutral (neutrino)--No long range couplings except gravity
- How is intrinsic spin encoded in the gravitational field?
- Information about internal spin must be encoded at asymptotic infinity

The Question

- Suppose a spinor falls into a blackhole
- Field is hidden behind horizon (spin measured by external fields)
- Charge neutral (neutrino)--No long range couplings except gravity
- How is intrinsic spin encoded in the gravitational field?
- Information about internal spin must be encoded at asymptotic infinity
- Set of isometries must be enlarged
- Poincare--> Spin enlarged Poincare

The Question

- Suppose a spinor falls into a blackhole
- Field is hidden behind horizon (spin measured by external fields)
- Charge neutral (neutrino)--No long range couplings except gravity
- How is intrinsic spin encoded in the gravitational field?
- Information about internal spin must be encoded at asymptotic infinity
- Set of isometries must be enlarged
- Poincare--> Spin enlarged Poincare
- Phase space of asymptotically flat spacetimes can be generalized to allow for representation of spin-enlarged symmetry algebra

The Question

- Suppose a spinor falls into a blackhole
- Field is hidden behind horizon (spin measured by external fields)
- Charge neutral (neutrino)--No long range couplings except gravity
-How is intrinsic spin encoded in the gravitational field?
- Information about internal spin must be encoded at asymptotic infinity
- Set of isometries must be enlarged
- Poincare--> Spin enlarged Poincare
- Phase space of asymptotically flat spacetimes can be generalized to allow for representation of spin-enlarged symmetry algebra
- Generators of symmetry include new contribution from internal gauge group
- In tetrad, generator of internal Spin $(3,1)$ group gives rise to spin

The Coupling of Internal Spin to Gravity

The Coupling of Internal Spin to Gravity

- Spin couples to the gravi-magnetic field similar to orbital angular momentum
- In linearized limit the coupling is ordinary dipole

$$
G_{\mu \nu}=8 \pi G T_{\mu \nu} \quad-\square \bar{h}_{\mu \nu}=8 \pi G T_{\mu \nu}
$$

The Coupling of Internal Spin to Gravity

- Spin couples to the gravi-magnetic field similar to orbital angular momentum
- In linearized limit the coupling is ordinary dipole

$$
\begin{aligned}
& G_{\mu \nu}=8 \pi G T_{\mu \nu} \quad-\square \bar{h}_{\mu \nu}=8 \pi G T_{\mu \nu} \\
& T_{\mu \nu}=\frac{1}{2}\left(\bar{\psi} \gamma_{(\mu} D_{\nu)} \psi-D_{(\nu} \bar{\psi} \gamma_{\mu)} \psi\right)
\end{aligned}
$$

The Coupling of Internal Spin to Gravity

- Spin couples to the gravi-magnetic field similar to orbital angular momentum
- In linearized limit the coupling is ordinary dipole

$$
\begin{aligned}
& G_{\mu \nu}=8 \pi G T_{\mu \nu} \quad-\square \bar{h}{ }_{\mu \nu}=8 \pi G T_{\mu \nu} \\
& T_{\mu \nu}=\frac{1}{2}\left(\bar{\psi} \gamma_{(\mu} D_{\nu)} \psi-D_{(\nu} \bar{\psi} \gamma_{\mu)} \psi\right)
\end{aligned}
$$

- Gravitational Gordon decomposition

$$
T_{\mu \nu}=\frac{1}{2}\left(\bar{\psi} \gamma_{\mu} D_{\nu} \psi-D_{\nu} \bar{\psi} \gamma_{\mu} \psi\right)+\frac{i}{4} \epsilon_{\mu \nu}{ }^{\alpha \beta} \partial_{\alpha} J_{\beta}^{(5)}
$$

The Coupling of Internal Spin to Gravity

- Spin couples to the gravi-magnetic field similar to orbital angular momentum
- In linearized limit the coupling is ordinary dipole

$$
\begin{aligned}
& G_{\mu \nu}=8 \pi G T_{\mu \nu} \quad-\square \bar{h} \\
& \mu \nu=8 \pi G T_{\mu \nu} \\
& T_{\mu \nu}=\frac{1}{2}\left(\bar{\psi} \gamma_{(\mu} D_{\nu)} \psi-D_{(\nu} \bar{\psi} \gamma_{\mu)} \psi\right)
\end{aligned}
$$

- Gravitational Gordon decomposition

$$
T_{\mu \nu}=\frac{1}{2}\left(\bar{\psi} \gamma_{\mu} D_{\nu} \psi-D_{\nu} \bar{\psi} \gamma_{\mu} \psi\right)+\frac{i}{4} \epsilon_{\mu \nu}{ }^{\alpha \beta} \partial_{\alpha} J_{\beta}^{(5)}
$$

Yields Orbital Ang. Mom.

The Coupling of Internal Spin to Gravity

- Spin couples to the gravi-magnetic field similar to orbital angular momentum
- In linearized limit the coupling is ordinary dipole

$$
\begin{aligned}
& G_{\mu \nu}=8 \pi G T_{\mu \nu} \quad-\square \bar{h} \\
& \mu \nu=8 \pi G T_{\mu \nu} \\
& T_{\mu \nu}=\frac{1}{2}\left(\bar{\psi} \gamma_{(\mu} D_{\nu)} \psi-D_{(\nu} \bar{\psi} \gamma_{\mu)} \psi\right)
\end{aligned}
$$

- Gravitational Gordon decomposition

$$
\frac{T_{\mu \nu}=\frac{1}{2}\left(\bar{\psi} \gamma_{\mu} D_{\nu} \psi-D_{\nu} \bar{\psi} \gamma_{\mu} \psi\right)+\frac{i}{4} \epsilon_{\mu \nu}^{\alpha \beta} \partial_{\alpha} J_{\beta}^{(5)}}{\text { Yields Orbital Ang. Mom. Yields Spin Ang. Mom. }}
$$

The Coupling of Internal Spin to Gravity

- Spin couples to the gravi-magnetic field similar to orbital angular momentum
- In linearized limit the coupling is ordinary dipole

$$
\begin{aligned}
& G_{\mu \nu}=8 \pi G T_{\mu \nu} \quad-\square \bar{h}{ }_{\mu \nu}=8 \pi G T_{\mu \nu} \\
& T_{\mu \nu}=\frac{1}{2}\left(\bar{\psi} \gamma_{(\mu} D_{\nu)} \psi-D_{(\nu} \bar{\psi} \gamma_{\mu)} \psi\right)
\end{aligned}
$$

- Gravitational Gordon decomposition

$$
\frac{T_{\mu \nu}=\frac{1}{2}\left(\bar{\psi} \gamma_{\mu} D_{\nu} \psi-D_{\nu} \bar{\psi} \gamma_{\mu} \psi\right)+\frac{i}{4} \epsilon_{\mu \nu}^{\alpha \beta} \partial_{\alpha} J_{\beta}^{(5)}}{\text { Yields Orbital Ang. Mom. Yields Spin Ang. Mom. }}
$$

- Multipole expansion yields gravi-magnetic dipole field

The Coupling of Internal Spin to Gravity

- Spin couples to the gravi-magnetic field similar to orbital angular momentum
- In linearized limit the coupling is ordinary dipole

$$
\begin{aligned}
& G_{\mu \nu}=8 \pi G T_{\mu \nu} \quad-\square \bar{h}{ }_{\mu \nu}=8 \pi G T_{\mu \nu} \\
& T_{\mu \nu}=\frac{1}{2}\left(\bar{\psi} \gamma_{(\mu} D_{\nu)} \psi-D_{(\nu} \bar{\psi} \gamma_{\mu)} \psi\right)
\end{aligned}
$$

- Gravitational Gordon decomposition

$$
\frac{T_{\mu \nu}=\frac{1}{2}\left(\bar{\psi} \gamma_{\mu} D_{\nu} \psi-D_{\nu} \bar{\psi} \gamma_{\mu} \psi\right)+\frac{i}{4} \epsilon_{\mu \nu}^{\alpha \beta} \partial_{\alpha} J_{\beta}^{(5)}}{\text { Yields Orbital Ang. Mom. Yields Spin Ang. Mom. }}
$$

- Multipole expansion yields gravi-magnetic dipole field

$$
(\mathcal{A})^{a} \equiv \frac{1}{2} \bar{h}^{0 a} \quad \mathcal{A}=G \frac{(\boldsymbol{L}+\boldsymbol{S}) \times \hat{\boldsymbol{r}}}{r^{2}}
$$

The Coupling of Internal Spin to Gravity

- Spin couples to the gravi-magnetic field similar to orbital angular momentum
- In linearized limit the coupling is ordinary dipole

$$
\begin{aligned}
& G_{\mu \nu}=8 \pi G T_{\mu \nu} \quad-\square \bar{h}{ }_{\mu \nu}=8 \pi G T_{\mu \nu} \\
& T_{\mu \nu}=\frac{1}{2}\left(\bar{\psi} \gamma_{(\mu} D_{\nu)} \psi-D_{(\nu} \bar{\psi} \gamma_{\mu)} \psi\right)
\end{aligned}
$$

- Gravitational Gordon decomposition

$$
\frac{T_{\mu \nu}=\frac{1}{2}\left(\bar{\psi} \gamma_{\mu} D_{\nu} \psi-D_{\nu} \bar{\psi} \gamma_{\mu} \psi\right)+\frac{i}{4} \epsilon_{\mu \nu}^{\alpha \beta} \partial_{\alpha} J_{\beta}^{(5)}}{\text { Yields Orbital Ang. Mom. Yields Spin Ang. Mom. }}
$$

- Multipole expansion yields gravi-magnetic dipole field

$$
(\mathcal{A})^{a} \equiv \frac{1}{2} \bar{h}^{0 a} \quad \mathcal{A}=G \frac{(\boldsymbol{L}+\boldsymbol{S}) \times \hat{\boldsymbol{r}}}{r^{2}}
$$

- Intrinsic spin sources gravi-magnetic field (spinors frame-drag)
- Spin also affects particle trajectory (not geodesic)

The Coupling of Internal Spin to Gravity

- Spin couples to the gravi-magnetic field similar to orbital angular momentum
- In linearized limit the coupling is ordinary dipole

$$
\begin{aligned}
& G_{\mu \nu}=8 \pi G T_{\mu \nu} \quad-\square \bar{h}{ }_{\mu \nu}=8 \pi G T_{\mu \nu} \\
& T_{\mu \nu}=\frac{1}{2}\left(\bar{\psi} \gamma_{(\mu} D_{\nu)} \psi-D_{(\nu} \bar{\psi} \gamma_{\mu)} \psi\right)
\end{aligned}
$$

- Gravitational Gordon decomposition

$$
\frac{T_{\mu \nu}=\frac{1}{2}\left(\bar{\psi} \gamma_{\mu} D_{\nu} \psi-D_{\nu} \bar{\psi} \gamma_{\mu} \psi\right)+\frac{i}{4} \epsilon_{\mu \nu}^{\alpha \beta} \partial_{\alpha} J_{\beta}^{(5)}}{\text { Yields Orbital Ang. Mom. Yields Spin Ang. Mom. }}
$$

- Multipole expansion yields gravi-magnetic dipole field

$$
(\mathcal{A})^{a} \equiv \frac{1}{2} \bar{h}^{0 a} \quad \mathcal{A}=G \frac{(\boldsymbol{L}+\boldsymbol{S}) \times \hat{\boldsymbol{r}}}{r^{2}}
$$

- Intrinsic spin sources gravi-magnetic field (spinors frame-drag)
- Spin also affects particle trajectory (not geodesic)

$$
H_{\text {spin-spin }}=2 G \frac{3\left(\boldsymbol{S}_{\mathbf{1}} \cdot \hat{\boldsymbol{r}}\right)\left(\boldsymbol{S}_{\mathbf{2}} \cdot \hat{\boldsymbol{r}}\right)-\boldsymbol{S}_{\mathbf{1}} \cdot \boldsymbol{S}_{\mathbf{2}}}{r^{3}}
$$

Fermions in Asymptotically Flat ST

Fermions in Asymptotically Flat ST

- Work in first order Einstein-Cartan Gravity (contact torsion)
$S=S_{\text {grav }}+S_{f e r m}$

Fermions in Asymptotically Flat ST

- Work in first order Einstein-Cartan Gravity (contact torsion)

$$
S=S_{\text {grav }}+S_{\text {ferm }} \quad S_{\text {grav }}=\frac{1}{k} \int_{M} \star e e R-\frac{1}{k} \int_{\partial M} \star e e \omega
$$

Fermions in Asymptotically Flat ST

- Work in first order Einstein-Cartan Gravity (contact torsion)

$$
\begin{aligned}
& S=S_{g r a v}+S_{\text {ferm }} \quad S_{\text {grav }}=\frac{1}{k} \int_{M} \star e e R-\frac{1}{k} \int_{\partial M} \star e e \omega \\
& S_{f e r m}=\alpha \int_{M} \frac{1}{2}(\bar{\psi} \star e e e D \psi+\overline{D \psi} \star e e e \psi)-m \bar{\psi} \psi \star e e e e
\end{aligned}
$$

Fermions in Asymptotically Flat ST

- Work in first order Einstein-Cartan Gravity (contact torsion)

$$
\begin{aligned}
& S=S_{\text {grav }}+S_{\text {ferm }} \quad S_{\text {grav }}=\frac{1}{k} \int_{M} \star e e R-\frac{1}{k} \int_{\partial M} \star e e \omega \\
& S_{f e r m}=\alpha \int_{M} \frac{1}{2}(\bar{\psi} \star e e e D \psi+\overline{D \psi} \star e e e \psi)-m \bar{\psi} \psi \star e e e e
\end{aligned}
$$

- Boundary term must be added at asymptotic infinity
- Boundary term is finite in first order gravity
- Ensures functional differentiablility

Fermions in Asymptotically Flat ST

- Work in first order Einstein-Cartan Gravity (contact torsion)

$$
\begin{aligned}
& S=S_{g r a v}+S_{\text {ferm }} \quad S_{\text {grav }}=\frac{1}{k} \int_{M} \star e e R-\frac{1}{k} \int_{\partial M} \star e e \omega \\
& S_{f e r m}=\alpha \int_{M} \frac{1}{2}(\bar{\psi} \star e e e D \psi+\overline{D \psi} \star e e e \psi)-m \bar{\psi} \psi \star e e e e
\end{aligned}
$$

- Boundary term must be added at asymptotic infinity
- Boundary term is finite in first order gravity
- Ensures functional differentiablility
- Torsion is present, but does not propagate
- All results expected to hold in 2nd order theory as well

Fermions in Asymptotically Flat ST

- Work in first order Einstein-Cartan Gravity (contact torsion)
$S=S_{g r a v}+S_{\text {ferm }} \quad S_{g r a v}=\frac{1}{k} \int_{M} \star e e R-\frac{1}{k} \int_{\partial M} \star e e \omega$

$$
S_{f e r m}=\alpha \int_{M} \frac{1}{2}(\bar{\psi} \star e e e D \psi+\overline{D \psi} \star e e e \psi)-m \bar{\psi} \psi \star e e e e
$$

- Boundary term must be added at asymptotic infinity
- Boundary term is finite in first order gravity
- Ensures functional differentiablility
- Torsion is present, but does not propagate
- All results expected to hold in 2nd order theory as well
- Symplectic form on spatial hypersurface is conserved on covariant phase space

$$
\boldsymbol{\Omega}=\frac{1}{k} \int_{\Sigma} \star \boldsymbol{\delta} \omega \wedge \boldsymbol{\delta}(e e)+\frac{\alpha}{2} \int_{\Sigma} \boldsymbol{\delta}(\bar{\psi} \star e e e) \wedge \boldsymbol{\delta} \psi+\boldsymbol{\delta} \bar{\psi} \wedge \boldsymbol{\delta}(\star e e e \psi)
$$

Intrinsic Spin in Asymptotically Flat Spacetimes

Intrinsic Spin in Asymptotically Flat Spacetimes

- The local gauge group of tetrad is not just diffeomorphism group

Intrinsic Spin in Asymptotically Flat Spacetimes

- The local gauge group of tetrad is not just diffeomorphism group - Have freedom to make internal Lorentz transformations:

Intrinsic Spin in Asymptotically Flat Spacetimes

- The local gauge group of tetrad is not just diffeomorphism group - Have freedom to make internal Lorentz transformations:

$$
\mathfrak{G}=\operatorname{Spin}(3,1) \rtimes D i f f_{4}
$$

Intrinsic Spin in Asymptotically Flat Spacetimes

- The local gauge group of tetrad is not just diffeomorphism group - Have freedom to make internal Lorentz transformations:

$$
\mathfrak{G}=\operatorname{Spin}(3,1) \rtimes \operatorname{Diff}_{4}
$$

- Spin does not come from just isometries of metric
- Metric isometries yield linear momentum and orbital angular momentum
- Tetrad isometries yield internal spin angular momentum

Intrinsic Spin in Asymptotically Flat Spacetimes

- The local gauge group of tetrad is not just diffeomorphism group - Have freedom to make internal Lorentz transformations:

$$
\mathfrak{G}=\operatorname{Spin}(3,1) \rtimes \operatorname{Diff}_{4}
$$

- Spin does not come from just isometries of metric
- Metric isometries yield linear momentum and orbital angular momentum
- Tetrad isometries yield internal spin angular momentum

$$
\begin{aligned}
e & \rightarrow \quad e^{\prime}=e+\mathcal{L}_{\bar{K}} e+[\lambda, e] \\
\omega & \rightarrow \quad \omega^{\prime}=\omega+\mathcal{L}_{\bar{K}} \omega-D \lambda
\end{aligned}
$$

Intrinsic Spin in Asymptotically Flat Spacetimes

-The local gauge group of tetrad is not just diffeomorphism group - Have freedom to make internal Lorentz transformations:

$$
\mathfrak{G}=\operatorname{Spin}(3,1) \rtimes \operatorname{Diff}_{4}
$$

- Spin does not come from just isometries of metric
- Metric isometries yield linear momentum and orbital angular momentum
- Tetrad isometries yield internal spin angular momentum

$$
\begin{array}{lll}
e & \rightarrow e^{\prime}=e+\mathcal{L}_{\bar{K}} e+[\lambda, e] \\
\omega & \rightarrow \omega^{\prime}=\omega+\mathcal{L}_{\bar{K}} \omega-D \lambda
\end{array} \quad \text { Need } \quad \begin{aligned}
& \mathcal{L}_{\bar{K}} e=-[\lambda, e] \\
& \mathcal{L}_{\bar{K}} \omega=D \lambda
\end{aligned}
$$

Intrinsic Spin in Asymptotically Flat Spacetimes

- The local gauge group of tetrad is not just diffeomorphism group - Have freedom to make internal Lorentz transformations:

$$
\mathfrak{G}=\operatorname{Spin}(3,1) \rtimes \operatorname{Diff}_{4}
$$

- Spin does not come from just isometries of metric
- Metric isometries yield linear momentum and orbital angular momentum
- Tetrad isometries yield internal spin angular momentum

$$
\begin{array}{rll}
e & \rightarrow e^{\prime}=e+\mathcal{L}_{\bar{K}} e+[\lambda, e] \\
\omega & \rightarrow \omega^{\prime}=\omega+\mathcal{L}_{\bar{K}} \omega-D \lambda
\end{array} \quad \text { Need } \quad \begin{aligned}
& \mathcal{L}_{\bar{K}} e=-[\lambda, e] \\
& \mathcal{L}_{\bar{K}} \omega=D \lambda \\
& { }^{0} g_{\mu \nu}=\eta_{\mu \nu}
\end{aligned}
$$

- Fix a fiducial flat metric and tetrad compatible with it:

$$
{ }^{0} g_{\mu \nu}=\eta_{I J}{ }^{0} e_{\mu}^{I}{ }^{0} e_{\nu}^{I}
$$

Intrinsic Spin in Asymptotically Flat Spacetimes

- The local gauge group of tetrad is not just diffeomorphism group - Have freedom to make internal Lorentz transformations:

$$
\mathfrak{G}=\operatorname{Spin}(3,1) \rtimes \operatorname{Diff}_{4}
$$

- Spin does not come from just isometries of metric
- Metric isometries yield linear momentum and orbital angular momentum
- Tetrad isometries yield internal spin angular momentum

$$
\begin{aligned}
e & \rightarrow e^{\prime}=e+\mathcal{L}_{\bar{K}} e+[\lambda, e] \\
\omega & \rightarrow \omega^{\prime}=\omega+\mathcal{L}_{\bar{K}} \omega-D \lambda
\end{aligned} \quad \text { Need } \quad
$$

- Fix a fiducial flat metric and tetrad compatible with it:

$$
{ }^{0} g_{\mu \nu}=\eta_{I J}{ }^{0} e_{\mu}^{I}{ }^{0} e_{\nu}^{I}
$$

- Spin enlarged Poincare group is isometry group that preserves the fiducial flat tetrad: $\mathfrak{G}=\operatorname{Spin}(3,1) \rtimes \operatorname{Dif} f_{4}$

Intrinsic Spin in Asymptotically Flat Spacetimes

-The local gauge group of tetrad is not just diffeomorphism group

- Have freedom to make internal Lorentz transformations:

$$
\mathfrak{G}=\operatorname{Spin}(3,1) \rtimes \operatorname{Diff}_{4}
$$

- Spin does not come from just isometries of metric
- Metric isometries yield linear momentum and orbital angular momentum
- Tetrad isometries yield internal spin angular momentum

$$
\begin{array}{cl}
e \rightarrow e^{\prime}=e+\mathcal{L}_{\bar{K}} e+[\lambda, e] \\
\omega \rightarrow \omega^{\prime}=\omega+\mathcal{L}_{\bar{K}} \omega-D \lambda
\end{array} \quad \text { Need } \quad \begin{aligned}
& \mathcal{L}_{\bar{K}} e=-[\lambda, e] \\
& \mathcal{L}_{\bar{K}} \omega=D \lambda \\
& \hline
\end{aligned}
$$

- Fix a fiducial flat metric and tetrad compatible with it:

$$
{ }^{0} g_{\mu \nu}=\eta_{I J}{ }^{0} e_{\mu}^{I}{ }^{0} e_{\nu}^{I}
$$

- Spin enlarged Poincare group is isometry group that preserves the fiducial flat tetrad: $\mathfrak{G}=\operatorname{Spin}(3,1) \rtimes \operatorname{Diff} f_{4}$

$$
\mathfrak{G}\left({ }^{0} e_{\mu}^{I}\right) \simeq \operatorname{Spin}(3,1) \otimes\left(S O(3,1) \ltimes \mathbb{R}^{3,1}\right)
$$

Intrinsic Spin in Asymptotically Flat Spacetimes

- The local gauge group of tetrad is not just diffeomorphism group
- Have freedom to make internal Lorentz transformations:

$$
\mathfrak{G}=\operatorname{Spin}(3,1) \rtimes \operatorname{Diff}_{4}
$$

- Spin does not come from just isometries of metric
- Metric isometries yield linear momentum and orbital angular momentum
- Tetrad isometries yield internal spin angular momentum

$$
\begin{array}{cl}
e \rightarrow e^{\prime}=e+\mathcal{L}_{\bar{K}} e+[\lambda, e] \\
\omega \rightarrow \omega^{\prime}=\omega+\mathcal{L}_{\bar{K}} \omega-D \lambda
\end{array} \quad \text { Need } \quad \begin{aligned}
& \mathcal{L}_{\bar{K}} e=-[\lambda, e] \\
& \mathcal{L}_{\bar{K}} \omega=D \lambda \\
& \hline
\end{aligned}
$$

- Fix a fiducial flat metric and tetrad compatible with it:

$$
{ }^{0} g_{\mu \nu}=\eta_{I J}{ }^{0} e_{\mu}^{I}{ }^{0} e_{\nu}^{I}
$$

- Spin enlarged Poincare group is isometry group that preserves the fiducial flat tetrad: $\mathfrak{G}=\operatorname{Spin}(3,1) \rtimes \operatorname{Dif} f_{4}$

$$
\phi: \operatorname{Spin}(3,1) \rightarrow S O(3,1)
$$

Internal and External Lorentz Groups are "locked" to preserve tetrad (Rigid gauge t-forms)

Spin-enlarged Poincare Group on Phase space

Spin-enlarged Poincare Group on Phase space

- First assume existence of global symmetry
- Generators are boundary terms of constraint functionals

Spin-enlarged Poincare Group on Phase space

- First assume existence of global symmetry
- Generators are boundary terms of constraint functionals
- Einstein-Cartan Gravity has additional gauge symmetry
- Diffeomorphisms: Hamiltonian and 3-diffeomorphism constraint
- Local Lorentz: Gauss constraint

Spin-enlarged Poincare Group on Phase space

- First assume existence of global symmetry
- Generators are boundary terms of constraint functionals
- Einstein-Cartan Gravity has additional gauge symmetry
- Diffeomorphisms: Hamiltonian and 3-diffeomorphism constraint
- Local Lorentz: Gauss constraint

$$
\begin{aligned}
\Omega(\overline{\boldsymbol{K}},) & =\delta D(\bar{K}) \\
\Omega(\bar{\lambda},) & =\delta G(\lambda)
\end{aligned}
$$

$$
\begin{aligned}
D(\bar{K}) & =-\frac{1}{k} \int_{\partial \Sigma} \iota_{\bar{K}}(\star e e) \omega \\
G(\lambda) & =-\frac{1}{k} \int_{\partial \Sigma} \star \lambda e e
\end{aligned}
$$

Spin-enlarged Poincare Group on Phase space

- First assume existence of global symmetry
- Generators are boundary terms of constraint functionals
- Einstein-Cartan Gravity has additional gauge symmetry
- Diffeomorphisms: Hamiltonian and 3-diffeomorphism constraint
- Local Lorentz: Gauss constraint

$$
\begin{aligned}
\Omega(\overline{\boldsymbol{K}},) & =\delta D(\bar{K}) \\
\Omega(\bar{\lambda},) & =\delta G(\lambda)
\end{aligned}
$$

$$
\begin{aligned}
D(\bar{K}) & =-\frac{1}{k} \int_{\partial \Sigma} \iota_{\bar{K}}(\star e e) \omega \\
G(\lambda) & =-\frac{1}{k} \int_{\partial \Sigma} \star \lambda e e
\end{aligned}
$$

- Assume global tetrad isometry: $\quad \mathcal{L}_{\bar{K}} e=-[\lambda, e]$
- Define momentum and angular momentum as follows

Spin-enlarged Poincare Group on Phase space

- First assume existence of global symmetry
- Generators are boundary terms of constraint functionals
- Einstein-Cartan Gravity has additional gauge symmetry
- Diffeomorphisms: Hamiltonian and 3-diffeomorphism constraint
- Local Lorentz: Gauss constraint

$$
\begin{aligned}
\Omega(\overline{\boldsymbol{K}},) & =\delta D(\bar{K}) \\
\Omega(\bar{\lambda},) & =\delta G(\lambda)
\end{aligned}
$$

$$
\begin{aligned}
D(\bar{K}) & =-\frac{1}{k} \int_{\partial \Sigma} \iota_{\bar{K}}(\star e e) \omega \\
G(\lambda) & =-\frac{1}{k} \int_{\partial \Sigma} \star \lambda e e
\end{aligned}
$$

- Assume global tetrad isometry: $\quad \mathcal{L}_{\bar{K}} e=-[\lambda, e]$
- Define momentum and angular momentum as follows

Translation: $\{\bar{K}, \lambda=0\}$

$$
P=D(\bar{K})=-\frac{1}{k} \int_{\Sigma} \iota_{\bar{K}}(\star e e) \omega
$$

Spin-enlarged Poincare Group on Phase space

- First assume existence of global symmetry
- Generators are boundary terms of constraint functionals
- Einstein-Cartan Gravity has additional gauge symmetry
- Diffeomorphisms: Hamiltonian and 3-diffeomorphism constraint
- Local Lorentz: Gauss constraint

$$
\begin{aligned}
\Omega(\overline{\boldsymbol{K}},) & =\delta D(\bar{K}) \\
\Omega(\bar{\lambda},) & =\delta G(\lambda)
\end{aligned}
$$

$$
\begin{aligned}
D(\bar{K}) & =-\frac{1}{k} \int_{\partial \Sigma} \iota_{\bar{K}}(\star e e) \omega \\
G(\lambda) & =-\frac{1}{k} \int_{\partial \Sigma} \star \lambda e e
\end{aligned}
$$

- Assume global tetrad isometry: $\quad \mathcal{L}_{\bar{K}} e=-[\lambda, e]$
- Define momentum and angular momentum as follows

Translation: $\{\bar{K}, \lambda=0\}$

$$
\begin{gathered}
P=D(\bar{K})=-\frac{1}{k} \int_{\Sigma} \iota_{\bar{K}}(\star e e) \omega \\
J_{t o t}=D(\bar{K})+G(\lambda)=-\frac{1}{k} \int_{\Sigma} \iota_{\bar{K}}(\star e e) \omega-\frac{1}{k} \int_{\Sigma} \star \lambda e e
\end{gathered}
$$

Rotation: $\{\bar{K}, \lambda\}$

Noether Charges and Komar Integral

Noether Charges and Komar Integral

- Noether charges follow from spin-enlarged Poincare algebra
- Internal and external Lorentz groups must be phased locked to get conserved total angular momentum (including spin)

Noether Charges and Komar Integral

- Noether charges follow from spin-enlarged Poincare algebra
- Internal and external Lorentz groups must be phased locked to get conserved total angular momentum (including spin)

Boosts/Rot:
$\mathcal{L}_{\bar{K}} e=-[\lambda, e]$

$$
Q_{\{\bar{K}, \lambda\}}=\frac{\alpha}{2} \int_{\Sigma} \mathcal{L}_{\bar{K}} \bar{\psi} \star e e e \psi-\bar{\psi} \star e e e \mathcal{L}_{\bar{K}} \psi-\bar{\psi}\{\lambda, \star e e e\} \psi .
$$

Noether Charges and Komar Integral

- Noether charges follow from spin-enlarged Poincare algebra
- Internal and external Lorentz groups must be phased locked to get conserved total angular momentum (including spin)

Boosts/Rot:
$\mathcal{L}_{\vec{K}} e=-[\lambda, e]$

$$
Q_{\{\bar{K}, \lambda\}}=\frac{\alpha}{2} \int_{\Sigma} \mathcal{L}_{\bar{K}} \bar{\psi} \star e e e \psi-\bar{\psi} \star e e e e \mathcal{L}_{\bar{K}} \psi-\bar{\psi}\{\lambda, \star e e e\} \psi .
$$

Noether Charges and Komar Integral

- Noether charges follow from spin-enlarged Poincare algebra
- Internal and external Lorentz groups must be phased locked to get conserved total angular momentum (including spin)

Boosts/Rot:
$\mathcal{L}_{\vec{K}} e=-[\lambda, e]$

$$
Q_{\{\bar{K}, \lambda\}}=\frac{\alpha}{2} \int_{\Sigma} \mathcal{L}_{\bar{K}} \bar{\psi} \star e e e \psi-\bar{\psi} \star e e e \mathcal{L}_{\bar{K}} \psi-\bar{\psi}\{\lambda, \star e e e\} \psi .
$$

Noether Charges and Komar Integral

- Noether charges follow from spin-enlarged Poincare algebra
- Internal and external Lorentz groups must be phased locked to get conserved total angular momentum (including spin)

Boosts/Rot:
$\mathcal{L}_{\bar{K}_{K}} e=-[\lambda, e]$

$$
Q_{\{\bar{K}, \lambda\}}=\frac{\alpha}{2} \int_{\Sigma} \mathcal{L}_{\bar{K}} \bar{\psi} \star e e e \underset{\text { Orbit }}{\psi-\bar{\psi} \star e e e} \underset{\text { Spin }}{\mathcal{L}_{\bar{K}} \psi-\bar{\psi}\{\lambda, \star e e e\}}
$$

- Agreement between Noether charges, asymptotic integrals, and Komar integral is obtained if and only if spin term is included
- Under assumption of global tetrad isometry:

$$
-\frac{1}{k} \int_{\partial \Sigma} \star[K, e] \omega-\frac{1}{k} \int_{\partial \Sigma} \star \lambda e e=Q_{\{\bar{K}, \lambda\}}
$$

Noether Charges and Komar Integral

- Noether charges follow from spin-enlarged Poincare algebra
- Internal and external Lorentz groups must be phased locked to get conserved total angular momentum (including spin)

Boosts/Rot:
$\mathcal{L}_{\bar{K}_{K}} e=-[\lambda, e]$

$$
Q_{\{\bar{K}, \lambda\}}=\frac{\alpha}{2} \int_{\Sigma} \mathcal{L}_{\bar{K}} \bar{\psi} \star e e e \psi-\bar{\psi} \star e e e \mathcal{L}_{\bar{K}} \psi-\bar{\psi}\{\lambda, \star e e e\} \psi \psi \text { Orbit } \underset{\text { Spin }}{\mathcal{L}^{*}}
$$

- Agreement between Noether charges, asymptotic integrals, and Komar integral is obtained if and only if spin term is included
- Under assumption of global tetrad isometry:

$$
-\frac{1}{k} \int_{\partial \Sigma} \star\left[K \underset{\text { Orbit }}{ } \underset{k}{k} \int_{\partial \Sigma} \star \lambda e e=Q_{\{\bar{K}, \lambda\}}\right.
$$

Noether Charges and Komar Integral

- Noether charges follow from spin-enlarged Poincare algebra
- Internal and external Lorentz groups must be phased locked to get conserved total angular momentum (including spin)

Boosts/Rot:
$\mathcal{L}_{\bar{K}_{K}} e=-[\lambda, e]$

$$
Q_{\{\bar{K}, \lambda\}}=\frac{\alpha}{2} \int_{\Sigma} \mathcal{L}_{\bar{K}} \bar{\psi} \star e e e \psi-\bar{\psi} \star e e e \mathcal{L}_{\bar{K}} \psi-\bar{\psi}\{\lambda, \star e e e\} \psi \psi \text { Orbit } \underset{\text { Spin }}{\mathcal{L}^{*}}
$$

- Agreement between Noether charges, asymptotic integrals, and Komar integral is obtained if and only if spin term is included
- Under assumption of global tetrad isometry:

$$
-\frac{1}{k} \int_{\partial \Sigma} \star\left[K, K_{\text {Orbit }},\right]_{\partial \Sigma} \omega-\frac{1}{k} \int_{\text {Spin }} \star \lambda e e=Q_{\{\bar{K}, \lambda\}}
$$

Noether Charges and Komar Integral

- Noether charges follow from spin-enlarged Poincare algebra
- Internal and external Lorentz groups must be phased locked to get conserved total angular momentum (including spin)

Boosts/Rot:
$\mathcal{L}_{\bar{K}^{e}} e=-[\lambda, e]$

$$
Q_{\{\bar{K}, \lambda\}}=\frac{\alpha}{2} \int_{\Sigma} \mathcal{L}_{\bar{K}} \bar{\psi} \star e e e \psi-\bar{\psi} \star e e e \mathcal{L}_{\bar{K}} \psi-\bar{\psi}\{\lambda, \star e e e\} \psi \psi \text { Obbit } \quad .
$$

- Agreement between Noether charges, asymptotic integrals, and Komar integral is obtained if and only if spin term is included
- Under assumption of global tetrad isometry:

$$
\left.-\frac{1}{k} \int_{\partial \Sigma} \star[K, e] \omega-\frac{1}{k} \int_{\partial \Sigma} \star \lambda e e=Q_{\text {Orbit }}=\text { Spin }^{K}, \lambda\right\}
$$

- Can be rearranged to reproduce Komar integral

$$
-\frac{1}{2 k} \int_{\partial \Sigma} * d \widetilde{K}=Q_{\{\bar{K}, \lambda\}}-\frac{\alpha}{2} \int_{\Sigma} \iota_{\bar{K}}(m \bar{\psi} \star e e e e \psi)
$$

Asymptotically Flat Phase Space

Asymptotically Flat Phase Space

- Spacetime reduces to fiducial flat tetrad at asymptotic infinity
- Expand tetrad in power series $e={ }^{0} e+{ }^{1} e / \rho+{ }^{2} e / \rho^{2}+\ldots$
- Spin-enlarged gauge group defined by isometries of flat tetrad, ${ }^{0} e$

Asymptotically Flat Phase Space

- Spacetime reduces to fiducial flat tetrad at asymptotic infinity
- Expand tetrad in power series $e={ }^{0} e+{ }^{1} e / \rho+{ }^{2} e / \rho^{2}+\ldots$
- Spin-enlarged gauge group defined by isometries of flat tetrad, ${ }^{0} e$
- Phase space is extension of Ashtekar, Engle, Sloan (arXiv:0802.2527)

Asymptotically Flat Phase Space

- Spacetime reduces to fiducial flat tetrad at asymptotic infinity
- Expand tetrad in power series $e={ }^{0} e+{ }^{1} e / \rho+{ }^{2} e / \rho^{2}+\ldots$
- Spin-enlarged gauge group defined by isometries of flat tetrad, ${ }^{0} e$
- Phase space is extension of Ashtekar, Engle, Sloan (arXiv:0802.2527)
I. Tetrad is compatible with Beig-Schmidt metric

Asymptotically Flat Phase Space

- Spacetime reduces to fiducial flat tetrad at asymptotic infinity
- Expand tetrad in power series $e={ }^{0} e+{ }^{1} e / \rho+{ }^{2} e / \rho^{2}+\ldots$
- Spin-enlarged gauge group defined by isometries of flat tetrad, ${ }^{0} e$
- Phase space is extension of Ashtekar, Engle, Sloan (arXiv:0802.2527)
I. Tetrad is compatible with Beig-Schmidt metric

2. Fiducial flat tetrad is globally constant

Asymptotically Flat Phase Space

- Spacetime reduces to fiducial flat tetrad at asymptotic infinity
- Expand tetrad in power series $e={ }^{0} e+{ }^{1} e / \rho+{ }^{2} e / \rho^{2}+\ldots$
- Spin-enlarged gauge group defined by isometries of flat tetrad, ${ }^{0} e$
- Phase space is extension of Ashtekar, Engle, Sloan (arXiv:0802.2527)
I. Tetrad is compatible with Beig-Schmidt metric

2. Fiducial flat tetrad is globally constant
(Allows for global gauge t-forms at lowest order)

Asymptotically Flat Phase Space

- Spacetime reduces to fiducial flat tetrad at asymptotic infinity
- Expand tetrad in power series $e={ }^{0} e+{ }^{1} e / \rho+{ }^{2} e / \rho^{2}+\ldots$
- Spin-enlarged gauge group defined by isometries of flat tetrad, ${ }^{0} e$
- Phase space is extension of Ashtekar, Engle, Sloan (arXiv:0802.2527)
I. Tetrad is compatible with Beig-Schmidt metric

2. Fiducial flat tetrad is globally constant
(Allows for global gauge t-forms at lowest order)
3. Zeroeth and first order terms constrained to have even parity

Asymptotically Flat Phase Space

- Spacetime reduces to fiducial flat tetrad at asymptotic infinity
- Expand tetrad in power series $e={ }^{0} e+{ }^{1} e / \rho+{ }^{2} e / \rho^{2}+\ldots$
- Spin-enlarged gauge group defined by isometries of flat tetrad, ${ }^{0} e$
- Phase space is extension of Ashtekar, Engle, Sloan (arXiv:0802.2527)
I. Tetrad is compatible with Beig-Schmidt metric

2. Fiducial flat tetrad is globally constant
(Allows for global gauge t-forms at lowest order)
3. Zeroeth and first order terms constrained to have even parity (Eliminates log- and super-translation ambiguities)

Asymptotically Flat Phase Space

- Spacetime reduces to fiducial flat tetrad at asymptotic infinity
- Expand tetrad in power series $e={ }^{0} e+{ }^{1} e / \rho+{ }^{2} e / \rho^{2}+\ldots$
- Spin-enlarged gauge group defined by isometries of flat tetrad, ${ }^{0} e$
- Phase space is extension of Ashtekar, Engle, Sloan (arXiv:0802.2527)
I. Tetrad is compatible with Beig-Schmidt metric

2. Fiducial flat tetrad is globally constant
(Allows for global gauge t-forms at lowest order)
3. Zeroeth and first order terms constrained to have even parity (Eliminates log- and super-translation ambiguities)
4. First order term generalized from AES to allow for gauge t-forms

Asymptotically Flat Phase Space

- Spacetime reduces to fiducial flat tetrad at asymptotic infinity
- Expand tetrad in power series $e={ }^{0} e+{ }^{1} e / \rho+{ }^{2} e / \rho^{2}+\ldots$
- Spin-enlarged gauge group defined by isometries of flat tetrad, ${ }^{0} e$
- Phase space is extension of Ashtekar, Engle, Sloan (arXiv:0802.2527)
I. Tetrad is compatible with Beig-Schmidt metric

2. Fiducial flat tetrad is globally constant
(Allows for global gauge t-forms at lowest order)
3. Zeroeth and first order terms constrained to have even parity (Eliminates log- and super-translation ambiguities)
4. First order term generalized from AES to allow for gauge t-forms (Allows for parity even gauge t-forms at next to lowest order)

Asymptotically Flat Phase Space

- Spacetime reduces to fiducial flat tetrad at asymptotic infinity
- Expand tetrad in power series $e={ }^{0} e+{ }^{1} e / \rho+{ }^{2} e / \rho^{2}+\ldots$
- Spin-enlarged gauge group defined by isometries of flat tetrad, ${ }^{0} e$
- Phase space is extension of Ashtekar, Engle, Sloan (arXiv:0802.2527)
I. Tetrad is compatible with Beig-Schmidt metric

2. Fiducial flat tetrad is globally constant
(Allows for global gauge t-forms at lowest order)
3. Zeroeth and first order terms constrained to have even parity
(Eliminates log- and super-translation ambiguities)
4. First order term generalized from AES to allow for gauge t-forms (Allows for parity even gauge t-forms at next to lowest order)

- Action is explicitly finite, symplectic form well-defined and conserved

Asymptotically Flat Phase Space

- Spacetime reduces to fiducial flat tetrad at asymptotic infinity
- Expand tetrad in power series $e={ }^{0} e+{ }^{1} e / \rho+{ }^{2} e / \rho^{2}+\ldots$
- Spin-enlarged gauge group defined by isometries of flat tetrad, ${ }^{0} e$
- Phase space is extension of Ashtekar, Engle, Sloan (arXiv:0802.2527)
I. Tetrad is compatible with Beig-Schmidt metric

2. Fiducial flat tetrad is globally constant
(Allows for global gauge t-forms at lowest order)
3. Zeroeth and first order terms constrained to have even parity
(Eliminates log- and super-translation ambiguities)
4. First order term generalized from AES to allow for gauge t-forms (Allows for parity even gauge t-forms at next to lowest order)

- Action is explicitly finite, symplectic form well-defined and conserved
- Phase space is not too restrictive
- Contains all familiar asymptotically flat solutions

Asymptotic Expansion of Gauss functional

- Expand Gauss functional for spin $(3,1)$ generator: $\chi={ }^{0} \chi+\frac{{ }^{1} \chi}{\rho}+\frac{{ }^{2} \chi}{\rho^{2}}+\ldots$

$$
G(\chi)={ }^{0} G+{ }^{1} G+{ }^{2} G
$$

Asymptotic Expansion of Gauss functional

- Expand Gauss functional for spin $(3,1)$ generator: $\chi={ }^{0} \chi+\frac{{ }^{1} \chi}{\rho}+\frac{{ }^{2} \chi}{\rho^{2}}+\ldots$

$$
\begin{aligned}
G(\chi) & ={ }^{0} G+{ }^{1} G+{ }^{2} G \\
{ }^{0} G & =-\frac{1}{k} \int_{S^{2}} \star^{0} \chi^{0} e^{0} e \\
{ }^{1} G & =-\frac{1}{k} \int_{S^{2}} \rho^{-1}\left(2 \star^{0} \chi^{0} e^{1} e+\star^{1} \chi^{0} e^{0} e\right) \\
{ }^{2} G & =-\frac{1}{k} \int_{S^{2}} \rho^{-2}\left(\star^{0} \chi^{1} e^{1} e+2 \star^{1} \chi^{0} e^{1} e+\star^{2} \chi^{0} e^{0} e+2 \star^{0} \chi^{0} e^{2} e\right)
\end{aligned}
$$

Asymptotic Expansion of Gauss functional

- Expand Gauss functional for spin $(3,1)$ generator: $\chi={ }^{0} \chi+\frac{{ }^{1} \chi}{\rho}+\frac{{ }^{2} \chi}{\rho^{2}}+\ldots$

$$
\begin{aligned}
G(\chi) & ={ }^{0} G+{ }^{1} G+{ }^{2} G \\
{ }^{0} G & =0 \\
{ }^{1} G & =0+0 \\
{ }^{2} G & =0+0-\frac{1}{k} \int_{S^{2}} \rho^{-2}\left(\star^{2} \chi^{0} e^{0} e+2 \star{ }^{0} \chi^{0} e^{2} e\right)
\end{aligned}
$$

Asymptotic Expansion of Gauss functional

- Expand Gauss functional for spin $(3,1)$ generator: $\chi={ }^{0} \chi+\frac{{ }^{1} \chi}{\rho}+\frac{{ }^{2} \chi}{\rho^{2}}+\ldots$

$$
\begin{aligned}
G(\chi) & ={ }^{0} G+{ }^{1} G+{ }^{2} G \\
{ }^{0} G & =0 \\
{ }^{1} G & =0+0 \\
{ }^{2} G & =0+0-\frac{1}{k} \int_{S^{2}} \rho^{-2}\left(\star^{2} \chi^{0} e^{0} e+2 \star{ }^{0} \chi^{0} e^{2} e\right)
\end{aligned}
$$

- Gauss constraint contains two terms, define one as spin, one as charge

$$
G(\lambda)=Q\left({ }^{2} \lambda\right)+S\left({ }^{0} \lambda\right) \quad \begin{aligned}
& Q\left({ }^{2} \lambda\right) \equiv-\frac{1}{k \rho^{2}} \int_{S^{2}} \star^{2} \lambda^{0} e^{0} e \\
& S\left({ }^{0} \lambda\right) \equiv-\frac{1}{k \rho^{2}} \int_{S^{2}} 2 \star^{0} \lambda^{0} e^{2} e
\end{aligned}
$$

Constructing L and S

Constructing Land S

- Fiducial tetrad isometries fix first two orders of generators:

Constructing Land S

- Fiducial tetrad isometries fix first two orders of generators:

Translations: $\quad \bar{K}^{\{i\}}={ }^{0} e_{\mu}^{I} \frac{\partial}{\partial x_{\mu}} \quad \longleftrightarrow \quad \lambda_{I J}^{\{\hat{I}\}}=0$

Constructing \mathbf{L} and \mathbf{S}

- Fiducial tetrad isometries fix first two orders of generators:

Translations: $\quad \bar{K}^{\{\hat{\{ }\}}={ }^{0} e_{\mu}^{I} \frac{\partial}{\partial x_{\mu}} \quad \longleftrightarrow \quad \lambda_{I J}^{\{\hat{i}\}}=0$
$\underline{\text { Boosts/Rots: }} \quad \bar{K}^{\{\hat{I} \hat{\}}\}}=\lambda_{I J}^{\{\hat{I} \hat{\}}} e_{\mu}^{I o} e_{\nu}^{J} x^{\mu} \frac{\partial}{\partial x_{\nu}} \longleftrightarrow \quad \lambda_{I J}^{\{\hat{I} \hat{\}}\}}=\delta_{I}^{\hat{I}} \delta_{J}^{\hat{J}}-\delta_{J}^{\hat{I}} \delta_{I}^{\hat{J}}$

Constructing Land S

- Fiducial tetrad isometries fix first two orders of generators:

Translations: $\quad \bar{K}^{\{\hat{\{ }\}}={ }^{0} e_{\mu}^{I} \frac{\partial}{\partial x_{\mu}} \quad \longleftrightarrow \quad \lambda_{I J}^{\{\hat{i}\}}=0$
$\underline{\text { Boosts/Rots: }} \bar{K}^{\{\hat{I} \hat{\}}\}}=\lambda_{I J}^{\{\hat{I} \hat{\}}\} o} e_{\mu}^{I o} e_{\nu}^{J} x^{\mu} \frac{\partial}{\partial x_{\nu}} \longleftrightarrow \quad \lambda_{I J}^{\{\hat{I} \hat{\}}\}}=\delta_{I}^{\hat{I}} \delta_{J}^{\hat{J}}-\delta_{I}^{\hat{I}} \delta_{I}^{\hat{J}}$

- Corresponding generators give linear and angular momenta

Constructing \mathbf{L} and \mathbf{S}

- Fiducial tetrad isometries fix first two orders of generators:

Translations: $\quad \bar{K}^{\{\hat{\{ }\}}={ }^{0} e_{\mu}^{I} \frac{\partial}{\partial x_{\mu}} \quad \longleftrightarrow \quad \lambda_{I J}^{\{\hat{i}\}}=0$
$\underline{\text { Boosts/Rots: }} \bar{K}^{\{\hat{I} \hat{\}}\}}=\lambda_{I J}^{\{\hat{I} \hat{\}}\} o} e_{\mu}^{I o} e_{\nu}^{J} x^{\mu} \frac{\partial}{\partial x_{\nu}} \longleftrightarrow \quad \lambda_{I J}^{\{\hat{I} \hat{\}}\}}=\delta_{I}^{\hat{I}} \delta_{J}^{\hat{J}}-\delta_{I}^{\hat{I}} \delta_{I}^{\hat{\delta}}$

- Corresponding generators give linear and angular momenta

$$
P^{\hat{I}}=D\left(\bar{K}^{\{\hat{Y}\}}\right)=-\frac{1}{k} \int_{\Sigma} \iota_{\left.\bar{K}^{\{t}\right\}}(* e e) \omega
$$

Constructing \mathbf{L} and \mathbf{S}

- Fiducial tetrad isometries fix first two orders of generators:

Translations: $\quad \bar{K}^{\{\hat{\{ }\}}={ }^{0} e_{\mu}^{I} \frac{\partial}{\partial x_{\mu}} \quad \longleftrightarrow \quad \lambda_{I J}^{\{\hat{Y}\}}=0$
$\underline{\text { Boosts/Rots: }} \bar{K}^{\{\hat{I} \hat{\}}\}}=\lambda_{I J}^{\{\hat{I} \hat{\}}\} o} e_{\mu}^{I o} e_{\nu}^{J} x^{\mu} \frac{\partial}{\partial x_{\nu}} \longleftrightarrow \quad \lambda_{I J}^{\{\hat{I} \hat{\}}\}}=\delta_{I}^{\hat{I}} \delta_{J}^{\hat{J}}-\delta_{J}^{\hat{I}} \delta_{I}^{\hat{j}}$

- Corresponding generators give linear and angular momenta

$$
\begin{array}{ll}
P^{\hat{I}}=D\left(\bar{K}^{\{\hat{I}\}}\right)=-\frac{1}{k} \int_{\Sigma} \iota_{\bar{K}\{\hat{I}\}}(\star e e) \omega & L^{\hat{I} \hat{J}} \equiv-\frac{1}{k} \int_{\partial \Sigma} \iota_{\bar{K}\{\hat{I} \hat{J}\}}(\star e e) \omega \\
J_{t o t}^{\hat{I} \hat{J}}=D\left(\bar{K}^{\{\hat{I} \hat{J}\}}\right)+G\left(\lambda^{\{\hat{I} \hat{J}\}}\right)=L^{\hat{I} \hat{J}}+S^{\hat{I} \hat{J}} & S^{\hat{I} \hat{J}} \equiv-\frac{1}{k} \int_{\partial \Sigma} \star \lambda^{\{\hat{I} \hat{J}\}} e e
\end{array}
$$

Constructing Land S

- Fiducial tetrad isometries fix first two orders of generators:

Translations: $\quad \bar{K}^{\{\hat{I}\}}={ }^{0} e_{\mu}^{I} \frac{\partial}{\partial x_{\mu}} \quad \longleftrightarrow \quad \lambda_{I J}^{\{\hat{I}\}}=0$
$\underline{\text { Boosts/Rots: }} \quad \bar{K}^{\{\hat{I} \hat{J}\}}=\lambda_{I J}^{\{\hat{I} \hat{J}\}}{ }_{o} e_{\mu}^{I o} e_{\nu}^{J} x^{\mu} \frac{\partial}{\partial x_{\nu}} \quad \longleftrightarrow \quad \lambda_{I J}^{\{\hat{I} \hat{\jmath}\}}=\delta_{I}^{\hat{I}} \delta_{J}^{\hat{J}}-\delta_{J}^{\hat{I}} \delta_{I}^{\hat{J}}$

- Corresponding generators give linear and angular momenta

$$
\begin{array}{ll}
P^{\hat{I}}=D\left(\bar{K}^{\{\hat{I}\}}\right)=-\frac{1}{k} \int_{\Sigma} \iota_{\bar{K}^{\{\hat{L}\}}}(\star e e) \omega & L^{\hat{I} \hat{J}} \equiv-\frac{1}{k} \int_{\partial \Sigma} \iota_{\bar{K}^{\{\hat{I}, \hat{J}\}}}(\star e e) \omega \\
J_{t o t}^{\hat{I} \hat{J}}=D\left(\bar{K}^{\{\hat{I} \hat{J}\}}\right)+G\left(\lambda^{\{\hat{I} \hat{J}\}}\right)=L^{\hat{I} \hat{J}}+S^{\hat{I} \hat{J}} & S^{\hat{I} \hat{J}} \equiv-\frac{1}{k} \int_{\partial \Sigma} \star \lambda^{\{\hat{I} \hat{J}\}} e e
\end{array}
$$

- Recall that Spin $(3, I)$ and $S O(3, I)$ subgroups are "locked"

$$
\begin{aligned}
\phi: \mathfrak{s p i n}(3,1) & \rightarrow \\
\left.\operatorname{so}^{\{\hat{I} \hat{J}\}}\right\} & \mapsto \phi\left(\lambda^{\{\hat{I} \hat{J}\}}\right)=\bar{K}^{\{\hat{I} \hat{J}\}}
\end{aligned}
$$

Constructing Land S

- Fiducial tetrad isometries fix first two orders of generators:

Translations: $\quad \bar{K}^{\{\hat{I}\}}={ }^{0} e_{\mu}^{I} \frac{\partial}{\partial x_{\mu}} \quad \longleftrightarrow \quad \lambda_{I J}^{\{\hat{I}\}}=0$
$\underline{\text { Boosts/Rots: }} \quad \bar{K}^{\{\hat{I} \hat{J}\}}=\lambda_{I J}^{\{\hat{I} \hat{J}\}}{ }^{o} e_{\mu}^{I o} e_{\nu}^{J} x^{\mu} \frac{\partial}{\partial x_{\nu}} \quad \longleftrightarrow \quad \lambda_{I J}^{\{\hat{I} \hat{\jmath}\}}=\delta_{I}^{\hat{I}} \delta_{J}^{\hat{J}}-\delta_{J}^{\hat{I}} \delta_{I}^{\hat{J}}$

- Corresponding generators give linear and angular momenta

$$
\begin{array}{ll}
P^{\hat{I}}=D\left(\bar{K}^{\{\hat{I}\}}\right)=-\frac{1}{k} \int_{\Sigma} \iota_{\bar{K}^{\{\hat{f}\}}}(\star e e) \omega & L^{\hat{I} \hat{J}} \equiv-\frac{1}{k} \int_{\partial \Sigma} \iota_{\bar{K}^{\{\hat{\{ } \hat{J}\}}}(\star e e) \omega \\
J_{t o t}^{\hat{I} \hat{J}}=D\left(\bar{K}^{\{\hat{I} \hat{J}\}}\right)+G\left(\lambda^{\{\hat{I} \hat{J}\}}\right)=L^{\hat{I} \hat{J}}+S^{\hat{I} \hat{J}} & S^{\hat{I} \hat{J}} \equiv-\frac{1}{k} \int_{\partial \Sigma} \star \lambda^{\{\hat{I} \hat{J}\}} e e
\end{array}
$$

- Recall that Spin $(3, I)$ and $S O(3, I)$ subgroups are "locked"

$$
\begin{aligned}
\phi: \mathfrak{s p i n}(3,1) & \rightarrow \mathfrak{s o}(3,1) \\
\lambda^{\{\hat{I} \hat{J}\}} & \mapsto \phi\left(\lambda^{\{\hat{I} \hat{J}\}}\right)=\bar{K}^{\{\hat{I} \hat{J}\}}
\end{aligned}
$$

$$
\begin{aligned}
\Phi: \mathcal{F}(\mathfrak{s p i n}(3,1)) & \rightarrow \mathcal{F}(\mathfrak{s o}(3,1)) \\
S^{\hat{I} \hat{J}} & \mapsto \Phi\left(S^{\hat{I} \hat{J}}\right)=L\left(\phi\left(\lambda^{\{\hat{I} \hat{J}\}}\right)\right)=L^{\hat{I} \hat{J}}
\end{aligned}
$$

Symmetry Algebra

Symmetry Algebra

$$
\begin{aligned}
\left\{L^{\hat{I} \hat{J}}, L^{\hat{K} \hat{L}}\right\} & =2 \eta^{\hat{I}[\hat{K}} L^{\hat{L}] \hat{J}}-2 \eta^{\hat{\jmath}[\hat{K}} L^{\hat{L}] \hat{I}} \\
\left\{L^{\hat{I} \hat{J}}, P^{\hat{K}}\right\} & =2 \eta^{\hat{K}[\hat{J}} P^{I]} \\
\left\{P^{\hat{I}}, P^{\hat{J}}\right\} & =0
\end{aligned}
$$

Symmetry Algebra

$$
\begin{aligned}
\left\{L^{\hat{I} \hat{J}}, L^{\hat{K} \hat{L}}\right\} & =2 \eta^{\hat{I}[\hat{K}} L^{\hat{L}] \hat{J}}-2 \eta^{\hat{J}[\hat{K}} L^{\hat{L}] \hat{I}} \\
\left\{L^{\hat{I} \hat{J}}, P^{\hat{K}}\right\} & =2 \eta^{\hat{K}[\hat{J}} P^{I]} \\
\left\{P^{\hat{I}}, P^{\hat{J}}\right\} & =0
\end{aligned}
$$

$$
\operatorname{Spin}(3,1) \otimes\left(S O(3,1) \ltimes \mathbb{R}^{3,1}\right)
$$

Symmetry Algebra

$$
\begin{aligned}
\left\{L^{\hat{I} \hat{J}}, L^{\hat{K} \hat{L}}\right\} & =2 \eta^{\hat{I}[\hat{K}} L^{\hat{L}] \hat{J}}-2 \eta^{\hat{J}[\hat{K}} L^{\hat{L}] \hat{I}} \\
\left\{L^{\hat{I} \hat{J}}, P^{\hat{K}}\right\} & =2 \eta^{\hat{K}[\hat{J}} P^{I]} \\
\left\{P^{\hat{I}}, P^{\hat{J}}\right\} & =0 \\
\left\{S^{\hat{I} \hat{J}}, S^{\hat{K} \hat{L}}\right\} & =2 \eta^{\hat{I}[\hat{K}} S^{\hat{L}] \hat{J}}-2 \eta^{\hat{J}[\hat{K}} S^{\hat{L}] \hat{I}} \\
\left\{S^{\hat{I} \hat{J}}, P^{\hat{K}}\right\} & =0 \\
\left\{S^{\hat{I} \hat{J}}, L^{\hat{K} \hat{L}}\right\} & =0
\end{aligned}
$$

Symmetry Algebra

$$
\begin{aligned}
\left\{L^{\hat{I} \hat{J}}, L^{\hat{K} \hat{L}}\right\} & =2 \eta^{\hat{I}[\hat{K}} L^{\hat{L}] \hat{J}}-2 \eta^{\hat{J}[\hat{K}} L^{\hat{L}] \hat{I}} \\
\left\{L^{\hat{I} \hat{J}}, P^{\hat{K}}\right\} & =2 \eta^{\hat{K}[\hat{J}} P^{I]} \\
\left\{P^{\hat{I}}, P^{\hat{J}}\right\} & =0 \\
\left\{S^{\hat{I} \hat{J}}, S^{\hat{K} \hat{L}}\right\} & =2 \eta^{\hat{I}[\hat{K}} S^{\hat{L}] \hat{J}}-2 \eta^{\hat{J}[\hat{K}} S^{\hat{L}] \hat{I}} \\
\left\{S^{\hat{I} \hat{J}}, P^{\hat{K}}\right\} & =0 \\
\left\{S^{\hat{I} \hat{J}}, L^{\hat{K} \hat{L}}\right\} & =0
\end{aligned}
$$

$\operatorname{Spin}(3,1) \otimes\left(S O(3,1) \ltimes \mathbb{R}^{3,1}\right)$

Symmetry Algebra

$$
\begin{aligned}
\left\{L^{\hat{I} \hat{J}}, L^{\hat{K} \hat{L}}\right\} & =2 \eta^{\hat{I}[\hat{K}} L^{\hat{L}] \hat{J}}-2 \eta^{\hat{\jmath}[\hat{K}} L^{\hat{L}] \hat{I}} \\
\left\{L^{\hat{I} \hat{J}}, P^{\hat{K}}\right\} & =2 \eta^{\hat{K}[\hat{J}} P^{I]} \\
\left\{P^{\hat{I}}, P^{\hat{J}}\right\} & =0
\end{aligned}
$$

```
Spin}(3,1)\otimes(SO(3,1)\ltimes\mp@subsup{\mathbb{R}}{}{3,1}
```

$$
\left\{S^{\hat{I} \hat{J}}, S^{\hat{K} \hat{L}}\right\}=2 \eta^{\hat{I}[\hat{K}} S^{\hat{L}] \hat{J}}-2 \eta^{\hat{J}[\hat{K}} S^{\hat{L}] \hat{I}}
$$

$$
\left\{S^{\hat{I} \hat{J}}, P^{\hat{K}}\right\}=0
$$

$\operatorname{Spin}(3,1) \otimes\left(S O(3,1) \ltimes \mathbb{R}^{3,1}\right)$

$$
\left\{S^{\hat{I} \hat{J}}, L^{\hat{K} \hat{L}}\right\}=0
$$

$$
\begin{aligned}
\left\{Q\left({ }^{2} \lambda\right), L^{\hat{I} \hat{J}}\right\} & =-Q\left(\left[\lambda^{\hat{I} \hat{J}},{ }^{2} \lambda\right]\right) \\
\left\{Q\left({ }^{2} \lambda\right), S^{\hat{I} \hat{J}}\right\} & =+Q\left(\left[\lambda^{\hat{I} \hat{J}},{ }^{2} \lambda\right]\right) \\
\left\{Q\left({ }^{2} \lambda\right), P^{\hat{I}}\right\} & =0 \\
\left\{Q\left({ }^{2} \lambda_{1}\right), Q\left({ }^{2} \lambda_{2}\right)\right\} & =0
\end{aligned}
$$

Symmetry Algebra

$$
\begin{aligned}
\left\{L^{\hat{I} \hat{J}}, L^{\hat{K} \hat{L}}\right\} & =2 \eta^{\hat{I}[\hat{K}} L^{\hat{L}] \hat{J}}-2 \eta^{\hat{\jmath}[\hat{K}} L^{\hat{L}] \hat{I}} \\
\left\{L^{\hat{I} \hat{J}}, P^{\hat{K}}\right\} & =2 \eta^{\hat{K}[\hat{J}} P^{I]} \\
\left\{P^{\hat{I}}, P^{\hat{J}}\right\} & =0
\end{aligned}
$$

$$
\begin{aligned}
\left\{S^{\hat{I} \hat{J}}, S^{\hat{K} \hat{L}}\right\} & =2 \eta^{\hat{I}[\hat{K}} S^{\hat{L}] \hat{J}}-2 \eta^{\hat{J}[\hat{K}} S^{\hat{L}] \hat{I}} \\
\left\{S^{\hat{I} \hat{J}}, P^{\hat{K}}\right\} & =0 \\
\left\{S^{\hat{I} \hat{J}}, L^{\hat{K} \hat{L}}\right\} & =0
\end{aligned}
$$

$$
\begin{aligned}
\left\{Q\left({ }^{2} \lambda\right), L^{\hat{I} \hat{J}}\right\} & =-Q\left(\left[\lambda^{\hat{I} \hat{J}},{ }^{2} \lambda\right]\right) \\
\left\{Q\left({ }^{2} \lambda\right), S^{\hat{I} \hat{J}}\right\} & =+Q\left(\left[\lambda^{\hat{I} \hat{J}},{ }^{2} \lambda\right]\right) \\
\left\{Q\left({ }^{2} \lambda\right), P^{\hat{I}}\right\} & =0 \\
\left\{Q\left({ }^{2} \lambda_{1}\right), Q\left({ }^{2} \lambda_{2}\right)\right\} & =0
\end{aligned}
$$

$$
\operatorname{Spin}(3,1) \otimes\left(S O(3,1) \ltimes \mathbb{R}^{3,1}\right)
$$

$\operatorname{Spin}(3,1) \otimes\left(S O(3,1) \ltimes \mathbb{R}^{3,1}\right)$

$$
\begin{aligned}
& \left\{J_{t o t}^{\hat{I} \hat{I}}, Q\right\}=0 \\
& \left\{P^{\hat{I}}, Q\right\}=0
\end{aligned}
$$

(Spin-enlarged) Poincare invariant charge

Symmetry Algebra

$$
\begin{aligned}
\left\{L^{\hat{I} \hat{J}}, L^{\hat{K} \hat{L}}\right\} & =2 \eta^{\hat{I}[\hat{K}} L^{\hat{L}] \hat{J}}-2 \eta^{\hat{\jmath}[\hat{K}} L^{\hat{L}] \hat{I}} \\
\left\{L^{\hat{I} \hat{J}}, P^{\hat{K}}\right\} & =2 \eta^{\hat{K}[\hat{J}} P^{I]} \\
\left\{P^{\hat{I}}, P^{\hat{J}}\right\} & =0
\end{aligned}
$$

$$
\operatorname{Spin}(3,1) \otimes\left(S O(3,1) \ltimes \mathbb{R}^{3,1}\right)
$$

$$
\begin{aligned}
\left\{S^{\hat{I} \hat{J}}, S^{\hat{K} \hat{L}}\right\} & =2 \eta^{\hat{I}[\hat{K}} S^{\hat{L}] \hat{J}}-2 \eta^{\hat{J}[\hat{K}} S^{\hat{L}] \hat{I}} \\
\left\{S^{\hat{I} \hat{J}}, P^{\hat{K}}\right\} & =0 \\
\left\{S^{\hat{I} \hat{J}}, L^{\hat{K} \hat{L}}\right\} & =0
\end{aligned}
$$

$$
\begin{aligned}
\left\{Q\left({ }^{2} \lambda\right), L^{\hat{I} \hat{J}}\right\} & =-Q\left(\left[\lambda^{\hat{I} \hat{J}},{ }^{2} \lambda\right]\right) \\
\left\{Q\left({ }^{2} \lambda\right), S^{\hat{I} \hat{J}}\right\} & =+Q\left(\left[\lambda^{\hat{I} \hat{J}},{ }^{2} \lambda\right]\right) \\
\left\{Q\left({ }^{2} \lambda\right), P^{\hat{I}}\right\} & =0 \\
\left\{Q\left({ }^{2} \lambda_{1}\right), Q\left({ }^{2} \lambda_{2}\right)\right\} & =0
\end{aligned}
$$

- Casimir Invariants:

$$
C_{2} \equiv-M^{2}=P_{\hat{I}} P^{\hat{I}} . \quad C_{4} / C_{2} \equiv W_{\hat{I}} W^{\hat{I}} / P_{\hat{I}} P^{\hat{I}}=S(S+1) \quad W_{\hat{I}}=\frac{1}{2} \epsilon_{\hat{I} \hat{J} \hat{K} \hat{L}} P^{\hat{J}}\left(L^{\hat{K} \hat{L}}+S^{\hat{K} \hat{L}}\right)
$$

References

arXiv:0905.4529
The Internal Spin Angular Momentum of an Asymptotically Flat Spacetime
Andrew Randono, David Sloan
arXiv:0906.1385
Do Spinors Frame-Drag?
Andrew Randono

- This research was supported in part by NSF grant PHY0854743, The George A. and Margaret M. Downsbrough Endowment and the Eberly research funds of Penn State.

References

