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The Question

•Suppose a spinor falls into a blackhole
•Field is hidden behind horizon (spin measured by external fields)
•Charge neutral (neutrino)--No long range couplings except gravity

•How is intrinsic spin encoded in the gravitational field?
•Information about internal spin must be encoded at asymptotic infinity

•Set of isometries must be enlarged 
•Poincare--> Spin enlarged Poincare 

•Phase space of asymptotically flat spacetimes can be generalized to allow for 
representation of spin-enlarged symmetry algebra

•Generators of symmetry include new contribution from internal gauge group
•In tetrad, generator of internal Spin(3,1) group gives rise to spin
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•Work in first order Einstein-Cartan Gravity (contact torsion)

S = Sgrav + Sferm
Sgrav =

1
k

∫

M
! e e R− 1

k

∫

∂M
! e e ω

Sferm = α

∫

M

1
2

(
ψ # e e eDψ + Dψ # e e e ψ

)
−mψ̄ψ # e e e e

Ω =
1
k

∫

Σ
!δω ∧ δ(e e) +

α

2

∫

Σ
δ(ψ̄ ! e e e) ∧ δψ + δψ̄ ∧ δ(! e e e ψ)

•Symplectic form on spatial hypersurface is conserved on covariant phase space

•Boundary term must be added at asymptotic infinity
•Boundary term is finite in first order gravity
•Ensures functional differentiablility

•Torsion is present, but does not propagate
•All results expected to hold in 2nd order theory as well
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•Spin does not come from just isometries of metric
•Metric isometries yield linear momentum and orbital angular momentum
•Tetrad isometries yield internal spin angular momentum

G = Spin(3, 1) ! Diff4

•Spin enlarged Poincare group is isometry group that preserves the fiducial flat 
tetrad:

G = Spin(3, 1) ! Diff4

G(0eI
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Internal and External Lorentz 
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where λIJ = λIJ − ωIJ(K̄). Since the above expressions are manifestly covariant,
it is sometimes convenient to work with the covariant Lie derivative. However, one
must be careful in that fixing λ to be phase space independent forces λ to be phase
space dependent2. The advantage to this covariant form is that in the flat space
torsion-free limit, the generators L̃K̄{ÎĴ} generate the SO(3, 1) ! R3,1 subgroup and

λ{K̂L̂} satisfy the Spin(3, 1) algebra separately. The direct product between the two

groups in G(oe) is then manifest since (43) implies L̃K̄{ÎĴ}λ
{K̂L̂} = 0. However, since

the generators λ are phase space dependent, there are subtleties in the canonical
theory, which roughly speaking come from the difficulty of generically separating
spin angular momentum from orbital angular momentum in an arbitrary gauge3. To
get around these subtleties, we will always work in a Cartesian basis at asymptotic
infinity where 0eI

µ is a constant so that ∂µ
0eI

ν = 0. In this case, the six boost and
rotation Killing vectors are always paired with the six independent internal generators
λ, and the corresponding generators to the translational Killing vectors are all zero.
Furthermore, in this gauge the covariant and ordinary Lie derivatives coincide and
one can easily separate spin from orbital angular momentum in the canonical theory.

Now, suppose we have a solution to the full set of the Einstein-Cartan-Dirac
equations characterized by the fields e, ω, ψ and ψ̄. Assume that the geometry
admits a passive isometry of the form (43) and (43). Then given the solution ψ,
the actively transformed field ψ′ = ψ + LK̄ψ + λψ is also a solution for the same
gravitational field configuration e and ω.

With the definition of a rigid gauge transformation given above, the Noether
charge can now be easily generalized to spacetimes with curvature and torsion. Sup-
pose the spacetime (M, e) admits a rigid isometry generated by the pair (K̄,λ) sat-
isfying (39) and (40). Then the Noether charge (evaluated on-shell) associated with
this rigid isometry is

Q{K̄,λ} =
α

2

∫

Σ

LK̄ψ̄ & e e eψ − ψ̄ & e e eLK̄ψ − ψ̄{λ, &e e e}ψ . (44)

In the low curvature, low spin density limit when the spacetime is approximately flat
and torsion free, the spacetime admits ten Noether charges and (44) reduces to (36)
and (37) for the ten basis generators.

2From generic arguments, it can be argued that λ and not λ should be phase space independent.
For example, fixing δK̄ = 0 and δλ = 0, means that the variations δe and δω will themselves satisfy
the rigid gauge conditions (covariant or non-covariant). This is not true if one tried to fix δK̄ = 0
and δλ = 0

3The difficulty stems from the the fact that generically the vector field λ̄ = 1
k

∫
−Dλ δ

δω +[λ, e] δ
δe

is generically not a symplectomorphism since Ω(λ̄) = −δ 1
k

∫
#λ e e + 1

k

∫
#δλ e e. Combined with a

generator for the covariant Lie derivative, under the condition of a rigid gauge transformation, the
extra terms cancel, so the combination is a symplectomorphism. However, it is therefore clear that
it is difficult to generically separate the spin from the orbital angular momentum. These problems
disappear in an asymptotically Cartesian gauge.

14

Boosts/Rot:
LK̄e = −[λ, e]
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where λIJ = λIJ − ωIJ(K̄). Since the above expressions are manifestly covariant,
it is sometimes convenient to work with the covariant Lie derivative. However, one
must be careful in that fixing λ to be phase space independent forces λ to be phase
space dependent2. The advantage to this covariant form is that in the flat space
torsion-free limit, the generators L̃K̄{ÎĴ} generate the SO(3, 1) ! R3,1 subgroup and

λ{K̂L̂} satisfy the Spin(3, 1) algebra separately. The direct product between the two

groups in G(oe) is then manifest since (43) implies L̃K̄{ÎĴ}λ
{K̂L̂} = 0. However, since

the generators λ are phase space dependent, there are subtleties in the canonical
theory, which roughly speaking come from the difficulty of generically separating
spin angular momentum from orbital angular momentum in an arbitrary gauge3. To
get around these subtleties, we will always work in a Cartesian basis at asymptotic
infinity where 0eI

µ is a constant so that ∂µ
0eI

ν = 0. In this case, the six boost and
rotation Killing vectors are always paired with the six independent internal generators
λ, and the corresponding generators to the translational Killing vectors are all zero.
Furthermore, in this gauge the covariant and ordinary Lie derivatives coincide and
one can easily separate spin from orbital angular momentum in the canonical theory.

Now, suppose we have a solution to the full set of the Einstein-Cartan-Dirac
equations characterized by the fields e, ω, ψ and ψ̄. Assume that the geometry
admits a passive isometry of the form (43) and (43). Then given the solution ψ,
the actively transformed field ψ′ = ψ + LK̄ψ + λψ is also a solution for the same
gravitational field configuration e and ω.

With the definition of a rigid gauge transformation given above, the Noether
charge can now be easily generalized to spacetimes with curvature and torsion. Sup-
pose the spacetime (M, e) admits a rigid isometry generated by the pair (K̄,λ) sat-
isfying (39) and (40). Then the Noether charge (evaluated on-shell) associated with
this rigid isometry is

Q{K̄,λ} =
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LK̄ψ̄ & e e eψ − ψ̄ & e e eLK̄ψ − ψ̄{λ, &e e e}ψ . (44)

In the low curvature, low spin density limit when the spacetime is approximately flat
and torsion free, the spacetime admits ten Noether charges and (44) reduces to (36)
and (37) for the ten basis generators.

2From generic arguments, it can be argued that λ and not λ should be phase space independent.
For example, fixing δK̄ = 0 and δλ = 0, means that the variations δe and δω will themselves satisfy
the rigid gauge conditions (covariant or non-covariant). This is not true if one tried to fix δK̄ = 0
and δλ = 0

3The difficulty stems from the the fact that generically the vector field λ̄ = 1
k

∫
−Dλ δ

δω +[λ, e] δ
δe

is generically not a symplectomorphism since Ω(λ̄) = −δ 1
k

∫
#λ e e + 1

k

∫
#δλ e e. Combined with a

generator for the covariant Lie derivative, under the condition of a rigid gauge transformation, the
extra terms cancel, so the combination is a symplectomorphism. However, it is therefore clear that
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torsion-free limit, the generators L̃K̄{ÎĴ} generate the SO(3, 1) ! R3,1 subgroup and

λ{K̂L̂} satisfy the Spin(3, 1) algebra separately. The direct product between the two

groups in G(oe) is then manifest since (43) implies L̃K̄{ÎĴ}λ
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•Agreement between Noether charges, asymptotic integrals, and Komar integral 
is obtained if and only if spin term is included

•Under assumption of global tetrad isometry:

The next step is to evaluate the expression on the set of field configurations that
admit a rigid isometry generated by the vector field K̄, which is now a Killing field,
and its canonical pair λ chosen so that LK̄e = −[λ, e] and LK̄ω = Dλ for all tetrads
and spin connections in this subspace, denoted ΓK̄

λ . The vector field, W̄ now reduces
to

W̄
ΓK̄

λ
= (0 , 0 , LK̄ψ + λψ , LK̄ψ̄ − ψ̄λ) , (48)

so the desired expression depends only on the spinor-matter component of the sym-
plectic form. Evaluated on this subspace, we have

Ω(W̄ , )
ΓK̄

λ= δ

(
α

2

∫

Σ

LK̄ψ̄ % e e eψ − ψ̄ % e e eLK̄ψ − ψ̄{λ , %e e e}ψ
)

+
α

2

∫

Σ

LK̄

(
ψ̄ % e e e δψ − δψ̄ % e e eψ

)
. (49)

In evaluating the above expression we have assumed that the spinor fields fall off
sufficiently rapidly outside a compact region that we can ignore boundary terms
involving the spinor fields.

We can now combine these two expressions by considering the intersection Γ̃K̄
λ =

Γ̃
⋂

ΓK̄
λ , consisting if the set of solutions to the Einstein-Cartan-Dirac equations that

admit a rigid isometry generated by K̄ and λ. In deriving the following, it will be
useful to first point out the on-shell identities

α
2

∫
Σ LK̄

(
ψ̄ % e e e δψ − δψ̄ % e e eψ

) eΓK̄
λ= 0

1
k

∫
∂Σ ιK̄ (% δω e e)

eΓK̄
λ= −δ

(
α
2

∫
Σ ιK̄(m ψ̄ % e e e e ψ)

)
. (50)

The first of these holds for any vector field K̄ (not just Killing vectors) and establishes
that not only is the total symplectic form hypersurface invariant, but the gravitational
and fermionic components are separately invariant. Using these identities, on Γ̃K̄

λ we
have

1

k

∫

∂Σ

%δω [K, e] + %ω(K̄) δ e e− δ

(
1

k

∫

∂Σ

%λ e e

)
eΓK̄

λ= δQ{K̄,λ} (51)

where QK̄,λ is the Noether charge (44). Following [2], when the phase space is defined
appropriately, the δ can be pulled out of the integral at asymptotic infinity to yield
the following4

− 1

k

∫

∂Σ

% [K, e] ω − 1

k

∫

∂Σ

% λ e e = Q{K̄,λ} . (52)

4Technically the equality is only valid up to a functional constant, but one can make general
arguments that this constant should be set to zero, as we have done here.
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ν = 0. In this case, the six boost and
rotation Killing vectors are always paired with the six independent internal generators
λ, and the corresponding generators to the translational Killing vectors are all zero.
Furthermore, in this gauge the covariant and ordinary Lie derivatives coincide and
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equations characterized by the fields e, ω, ψ and ψ̄. Assume that the geometry
admits a passive isometry of the form (43) and (43). Then given the solution ψ,
the actively transformed field ψ′ = ψ + LK̄ψ + λψ is also a solution for the same
gravitational field configuration e and ω.

With the definition of a rigid gauge transformation given above, the Noether
charge can now be easily generalized to spacetimes with curvature and torsion. Sup-
pose the spacetime (M, e) admits a rigid isometry generated by the pair (K̄,λ) sat-
isfying (39) and (40). Then the Noether charge (evaluated on-shell) associated with
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In the low curvature, low spin density limit when the spacetime is approximately flat
and torsion free, the spacetime admits ten Noether charges and (44) reduces to (36)
and (37) for the ten basis generators.

2From generic arguments, it can be argued that λ and not λ should be phase space independent.
For example, fixing δK̄ = 0 and δλ = 0, means that the variations δe and δω will themselves satisfy
the rigid gauge conditions (covariant or non-covariant). This is not true if one tried to fix δK̄ = 0
and δλ = 0

3The difficulty stems from the the fact that generically the vector field λ̄ = 1
k
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δω +[λ, e] δ
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∫
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∫
#δλ e e. Combined with a

generator for the covariant Lie derivative, under the condition of a rigid gauge transformation, the
extra terms cancel, so the combination is a symplectomorphism. However, it is therefore clear that
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and its canonical pair λ chosen so that LK̄e = −[λ, e] and LK̄ω = Dλ for all tetrads
and spin connections in this subspace, denoted ΓK̄

λ . The vector field, W̄ now reduces
to
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In evaluating the above expression we have assumed that the spinor fields fall off
sufficiently rapidly outside a compact region that we can ignore boundary terms
involving the spinor fields.

We can now combine these two expressions by considering the intersection Γ̃K̄
λ =

Γ̃
⋂

ΓK̄
λ , consisting if the set of solutions to the Einstein-Cartan-Dirac equations that

admit a rigid isometry generated by K̄ and λ. In deriving the following, it will be
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The first of these holds for any vector field K̄ (not just Killing vectors) and establishes
that not only is the total symplectic form hypersurface invariant, but the gravitational
and fermionic components are separately invariant. Using these identities, on Γ̃K̄

λ we
have
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where QK̄,λ is the Noether charge (44). Following [2], when the phase space is defined
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where λIJ = λIJ − ωIJ(K̄). Since the above expressions are manifestly covariant,
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groups in G(oe) is then manifest since (43) implies L̃K̄{ÎĴ}λ
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the generators λ are phase space dependent, there are subtleties in the canonical
theory, which roughly speaking come from the difficulty of generically separating
spin angular momentum from orbital angular momentum in an arbitrary gauge3. To
get around these subtleties, we will always work in a Cartesian basis at asymptotic
infinity where 0eI

µ is a constant so that ∂µ
0eI

ν = 0. In this case, the six boost and
rotation Killing vectors are always paired with the six independent internal generators
λ, and the corresponding generators to the translational Killing vectors are all zero.
Furthermore, in this gauge the covariant and ordinary Lie derivatives coincide and
one can easily separate spin from orbital angular momentum in the canonical theory.

Now, suppose we have a solution to the full set of the Einstein-Cartan-Dirac
equations characterized by the fields e, ω, ψ and ψ̄. Assume that the geometry
admits a passive isometry of the form (43) and (43). Then given the solution ψ,
the actively transformed field ψ′ = ψ + LK̄ψ + λψ is also a solution for the same
gravitational field configuration e and ω.

With the definition of a rigid gauge transformation given above, the Noether
charge can now be easily generalized to spacetimes with curvature and torsion. Sup-
pose the spacetime (M, e) admits a rigid isometry generated by the pair (K̄,λ) sat-
isfying (39) and (40). Then the Noether charge (evaluated on-shell) associated with
this rigid isometry is

Q{K̄,λ} =
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∫

Σ

LK̄ψ̄ & e e eψ − ψ̄ & e e eLK̄ψ − ψ̄{λ, &e e e}ψ . (44)

In the low curvature, low spin density limit when the spacetime is approximately flat
and torsion free, the spacetime admits ten Noether charges and (44) reduces to (36)
and (37) for the ten basis generators.

2From generic arguments, it can be argued that λ and not λ should be phase space independent.
For example, fixing δK̄ = 0 and δλ = 0, means that the variations δe and δω will themselves satisfy
the rigid gauge conditions (covariant or non-covariant). This is not true if one tried to fix δK̄ = 0
and δλ = 0

3The difficulty stems from the the fact that generically the vector field λ̄ = 1
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δe
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∫
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generator for the covariant Lie derivative, under the condition of a rigid gauge transformation, the
extra terms cancel, so the combination is a symplectomorphism. However, it is therefore clear that
it is difficult to generically separate the spin from the orbital angular momentum. These problems
disappear in an asymptotically Cartesian gauge.
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The next step is to evaluate the expression on the set of field configurations that
admit a rigid isometry generated by the vector field K̄, which is now a Killing field,
and its canonical pair λ chosen so that LK̄e = −[λ, e] and LK̄ω = Dλ for all tetrads
and spin connections in this subspace, denoted ΓK̄

λ . The vector field, W̄ now reduces
to
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= (0 , 0 , LK̄ψ + λψ , LK̄ψ̄ − ψ̄λ) , (48)
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In evaluating the above expression we have assumed that the spinor fields fall off
sufficiently rapidly outside a compact region that we can ignore boundary terms
involving the spinor fields.

We can now combine these two expressions by considering the intersection Γ̃K̄
λ =

Γ̃
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ΓK̄
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The first of these holds for any vector field K̄ (not just Killing vectors) and establishes
that not only is the total symplectic form hypersurface invariant, but the gravitational
and fermionic components are separately invariant. Using these identities, on Γ̃K̄
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where λIJ = λIJ − ωIJ(K̄). Since the above expressions are manifestly covariant,
it is sometimes convenient to work with the covariant Lie derivative. However, one
must be careful in that fixing λ to be phase space independent forces λ to be phase
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rotation Killing vectors are always paired with the six independent internal generators
λ, and the corresponding generators to the translational Killing vectors are all zero.
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pose the spacetime (M, e) admits a rigid isometry generated by the pair (K̄,λ) sat-
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and torsion free, the spacetime admits ten Noether charges and (44) reduces to (36)
and (37) for the ten basis generators.

2From generic arguments, it can be argued that λ and not λ should be phase space independent.
For example, fixing δK̄ = 0 and δλ = 0, means that the variations δe and δω will themselves satisfy
the rigid gauge conditions (covariant or non-covariant). This is not true if one tried to fix δK̄ = 0
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3The difficulty stems from the the fact that generically the vector field λ̄ = 1
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disappear in an asymptotically Cartesian gauge.

14

Boosts/Rot:
LK̄e = −[λ, e]

•Agreement between Noether charges, asymptotic integrals, and Komar integral 
is obtained if and only if spin term is included

•Under assumption of global tetrad isometry:
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admit a rigid isometry generated by the vector field K̄, which is now a Killing field,
and its canonical pair λ chosen so that LK̄e = −[λ, e] and LK̄ω = Dλ for all tetrads
and spin connections in this subspace, denoted ΓK̄

λ . The vector field, W̄ now reduces
to

W̄
ΓK̄

λ
= (0 , 0 , LK̄ψ + λψ , LK̄ψ̄ − ψ̄λ) , (48)

so the desired expression depends only on the spinor-matter component of the sym-
plectic form. Evaluated on this subspace, we have

Ω(W̄ , )
ΓK̄

λ= δ

(
α

2

∫

Σ

LK̄ψ̄ % e e eψ − ψ̄ % e e eLK̄ψ − ψ̄{λ , %e e e}ψ
)

+
α

2

∫

Σ

LK̄

(
ψ̄ % e e e δψ − δψ̄ % e e eψ

)
. (49)

In evaluating the above expression we have assumed that the spinor fields fall off
sufficiently rapidly outside a compact region that we can ignore boundary terms
involving the spinor fields.

We can now combine these two expressions by considering the intersection Γ̃K̄
λ =

Γ̃
⋂

ΓK̄
λ , consisting if the set of solutions to the Einstein-Cartan-Dirac equations that

admit a rigid isometry generated by K̄ and λ. In deriving the following, it will be
useful to first point out the on-shell identities

α
2

∫
Σ LK̄

(
ψ̄ % e e e δψ − δψ̄ % e e eψ

) eΓK̄
λ= 0

1
k

∫
∂Σ ιK̄ (% δω e e)

eΓK̄
λ= −δ

(
α
2

∫
Σ ιK̄(m ψ̄ % e e e e ψ)

)
. (50)

The first of these holds for any vector field K̄ (not just Killing vectors) and establishes
that not only is the total symplectic form hypersurface invariant, but the gravitational
and fermionic components are separately invariant. Using these identities, on Γ̃K̄

λ we
have

1

k

∫

∂Σ

%δω [K, e] + %ω(K̄) δ e e− δ

(
1

k

∫

∂Σ

%λ e e

)
eΓK̄

λ= δQ{K̄,λ} (51)

where QK̄,λ is the Noether charge (44). Following [2], when the phase space is defined
appropriately, the δ can be pulled out of the integral at asymptotic infinity to yield
the following4

− 1

k

∫

∂Σ

% [K, e] ω − 1

k

∫

∂Σ

% λ e e = Q{K̄,λ} . (52)

4Technically the equality is only valid up to a functional constant, but one can make general
arguments that this constant should be set to zero, as we have done here.

16

Spin

Orbit

Orbit

Spin

•Can be rearranged to reproduce Komar integral

− 1
2k

∫

∂Σ
∗dK̃ = Q{K̄,λ} −

α

2

∫

Σ
ιK̄

(
m ψ̄ $ e e e e ψ

)
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Asymptotically Flat Phase Space

•Spacetime reduces to fiducial flat tetrad at asymptotic infinity

•Expand tetrad in power series
•Spin-enlarged gauge group defined by isometries of flat tetrad, 

e = 0e + 1e/ρ + 2e/ρ2 + ...
0e
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Asymptotically Flat Phase Space

•Spacetime reduces to fiducial flat tetrad at asymptotic infinity

•Expand tetrad in power series
•Spin-enlarged gauge group defined by isometries of flat tetrad, 

e = 0e + 1e/ρ + 2e/ρ2 + ...
0e

•Phase space is extension of Ashtekar, Engle, Sloan (arXiv:0802.2527)

1. Tetrad is compatible with Beig-Schmidt metric
2. Fiducial flat tetrad is globally constant 

(Allows for global gauge t-forms at lowest order)
3. Zeroeth and first order terms constrained to have even parity

(Eliminates log- and super-translation ambiguities)
4. First order term generalized from AES to allow for gauge t-forms

(Allows for parity even gauge t-forms at next to lowest order)

•Action is explicitly finite, symplectic form well-defined and conserved

•Phase space is not too restrictive
•Contains all familiar asymptotically flat solutions
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Asymptotic Expansion of Gauss functional

•Expand Gauss functional for spin(3,1) generator: χ = 0χ +
1χ

ρ
+

2χ

ρ2
+ ...

G(χ) = 0G + 1G + 2G
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Asymptotic Expansion of Gauss functional

•Expand Gauss functional for spin(3,1) generator: χ = 0χ +
1χ

ρ
+

2χ

ρ2
+ ...

G(χ) = 0G + 1G + 2G

0G = −1
k

∫

S2
!0χ 0e 0e

1G = −1
k

∫

S2
ρ−1(2 ! 0χ 0e 1e + !1χ 0e 0e)

2G = −1
k

∫

S2
ρ−2(!0χ 1e 1e + 2 ! 1χ 0e 1e + !2χ 0e 0e + 2 ! 0χ 0e 2e)
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•Expand Gauss functional for spin(3,1) generator: χ = 0χ +
1χ

ρ
+

2χ

ρ2
+ ...

G(χ) = 0G + 1G + 2G

0G = 0
1G = 0 + 0
2G = 0 + 0− 1

k

∫

S2
ρ−2("2χ 0e 0e + 2 " 0χ 0e 2e)
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Asymptotic Expansion of Gauss functional

•Expand Gauss functional for spin(3,1) generator: χ = 0χ +
1χ

ρ
+

2χ

ρ2
+ ...

G(χ) = 0G + 1G + 2G

0G = 0
1G = 0 + 0
2G = 0 + 0− 1

k

∫

S2
ρ−2("2χ 0e 0e + 2 " 0χ 0e 2e)

•Gauss constraint contains two terms, define one as spin, one as charge

G(λ) = Q(2λ) + S(0λ)
Q(2λ) ≡ − 1

kρ2

∫

S2
#2λ 0e 0e

S(0λ) ≡ − 1
kρ2

∫

S2
2 # 0λ 0e 2e
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•Fiducial tetrad isometries fix first two orders of generators:

Translations: K̄{Î} = 0eI
µ

∂

∂xµ
λ{Î}

IJ = 0

To gain a better understanding for the conserved charges, we introduce a basis for
the set of isometries of Minkowski space. It is convenient to introduce a new set
of indices Â := (0̂, 1̂, 2̂, 3̂, 4̂) labelling the vector representation of the Lie algebra
iso(3, 1) obtained from a contraction of so(4, 1). The set of ten basis vectors K̄{ÂB̂}

satisfy the following algebra under the Lie bracket:
[
K̄{ÂB̂} , K̄{ĈD̂}

]
= f {ÂB̂} {ĈD̂}

{ÊF̂} K̄{ÊF̂} (33)

where f {ÂB̂} {ĈD̂}
{ÊF̂} are the structure constants for the Lie algebra iso(3, 1). For

convenience, denoting the Lorentz indices by uppercase hatted indices towards the
end of the alphabet, Î , Ĵ , K̂... = (0̂, 1̂, 2̂, 3̂), a convenient basis of pairs (K̄{ÂB̂}, λ{ÂB̂})
satisfying (26) is:

K̄{ÎĴ} = λ{ÎĴ}
IJ

oeI
µ

oeJ
ν xµ ∂

∂xν
λ{ÎĴ}

IJ = δÎ
I δ

Ĵ
J − δÎ

JδĴ
I (34)

K̄ Î = K̄{4̂Î} = δÎ
µ

∂

∂xµ
λ{4̂Î}

IJ = 0 . (35)

With these definitions, we have a total of 10 conserved currents jµ

{ÂB̂} yielding the

ten conserved charges that we now identify with the energy-momentum and the (to-
tal=spin+orbital) angular momentum:

P Î ≡
∫

d3x j0 {4̂Î} = 6α

∫
d3x

1

2
δÎ
µ

(
ψ̄γ0∂µψ − (∂µψ̄) γ0ψ

)
(36)

J ÎĴ
tot = LÎĴ + S ÎĴ ≡

∫
d3x j0 {ÎĴ}

= 6α

∫
d3x

1

2
δÎĴ
µν

(
ψ̄γ0 xµ∂νψ − (xµ∂νψ̄) γ0ψ + ψ̄{γ0 , γµγν}ψ

)
. (37)

A key property of the symmetry group can be seen from the form of the gen-
erators given above. The Killing vectors and the matrix generators λ{ÎĴ} generate
metric isometries and internal Lorentz transformations. Together, they generate the
group structure Spin(3, 1)⊗(SO(3, 1)!R3,1) as will be discussed in more detail later.
In addition to this, the generators of the internal boosts and rotations are not inde-
pendent from the generators of the spacetime boosts and rotations, but instead are
“locked” by the condition (34). Since the generators were constructed from the condi-
tion that the transformations preserve 0e, we will refer to the (component connected
to the identity of) this group as the spin-enlarged Poincaré group and denote it G(0e).
This construct will be pivotal when considering the isometries of asymptotically flat
spacetimes in later sections.
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δÎ
µ

(
ψ̄γ0∂µψ − (∂µψ̄) γ0ψ

)
(36)

J ÎĴ
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I δ

Ĵ
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I (34)
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{ÊF̂} are the structure constants for the Lie algebra iso(3, 1). For

convenience, denoting the Lorentz indices by uppercase hatted indices towards the
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λ{Î}

IJ = 0

To gain a better understanding for the conserved charges, we introduce a basis for
the set of isometries of Minkowski space. It is convenient to introduce a new set
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K̄ Î = K̄{4̂Î} = δÎ
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δÎ
µ

(
ψ̄γ0∂µψ − (∂µψ̄) γ0ψ

)
(36)

J ÎĴ
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IJ = 0 . (35)

With these definitions, we have a total of 10 conserved currents jµ
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= 6α

∫
d3x

1

2
δÎĴ
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end of the alphabet, Î , Ĵ , K̂... = (0̂, 1̂, 2̂, 3̂), a convenient basis of pairs (K̄{ÂB̂}, λ{ÂB̂})
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δÎĴ
µν

(
ψ̄γ0 xµ∂νψ − (xµ∂νψ̄) γ0ψ + ψ̄{γ0 , γµγν}ψ

)
. (37)

A key property of the symmetry group can be seen from the form of the gen-
erators given above. The Killing vectors and the matrix generators λ{ÎĴ} generate
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S ÎĴ ≡ −1
k

∫

∂Σ
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λ{ÎĴ}

IJ = δÎ
I δ

Ĵ
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of indices Â := (0̂, 1̂, 2̂, 3̂, 4̂) labelling the vector representation of the Lie algebra
iso(3, 1) obtained from a contraction of so(4, 1). The set of ten basis vectors K̄{ÂB̂}
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K̄ Î = K̄{4̂Î} = δÎ
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{ÂB̂} yielding the

ten conserved charges that we now identify with the energy-momentum and the (to-
tal=spin+orbital) angular momentum:

P Î ≡
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IJ

oeI
µ

oeJ
ν xµ ∂

∂xν
λ{ÎĴ}
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Symmetry Algebra

{LÎĴ , LK̂L̂} = 2ηÎ[K̂LL̂]Ĵ − 2ηĴ[K̂LL̂]Î

{LÎĴ , P K̂} = 2ηK̂[ĴP I]

{P Î , P Ĵ} = 0
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•Casimir Invariants:

Spin(3, 1) ⊗ (SO(3, 1) ! R3,1). The algebra can be computed explicitly resulting in
the following

{LÎĴ , LK̂L̂} = 2ηÎ[K̂LL̂]Ĵ − 2ηĴ [K̂LL̂]Î

{LÎĴ , P K̂} = 2ηK̂[ĴP I]

{P Î , P Ĵ} = 0 , (77)

which defines the subalgebra of ISO(3, 1) = SO(3, 1) ! R3,1, together with

{S ÎĴ , SK̂L̂} = 2ηÎ[K̂SL̂]Ĵ − 2ηĴ [K̂SL̂]Î

{S ÎĴ , P K̂} = 0

{S ÎĴ , LK̂L̂} = 0 . (78)

In total this is precisely the Lie algebra of G(oe) = Spin(3, 1)⊗ (SO(3, 1) ! R3,1).
Since the generating functionals themselves form a representation of the appro-

priate algebra, we can now construct two invariants from the Casimirs. As usual, the
first invariant is quadratic Casimir which yields the mass square:

C2 ≡ −M2 = PÎP
Î . (79)

The second invariant is the quadratic Casimir which we identify with the total
(spin+orbital) angular momentum invariant of the spacetime:

C4/C2 ≡ WÎW
Î/PÎP

Î = S(S + 1) WÎ =
1

2
εÎĴK̂L̂P Ĵ(LK̂L̂ + SK̂L̂) . (80)

The invariance of these quantities follows from the commutation relations (77) and
(78).

7.1 A new Poincaré invariant charge

In the previous section, we saw that the from the canonical pair, {K̄{ÎĴ}, 0λ{ÎĴ}}
forming a rigid gauge transformation, one can construct the generating functionals of
the spin-enlarged Poincaré algebra. On the other hand, given any infinitesimal gauge
transformation, g ≈ 1 + 0λ + 1λ/ρ + 2λ/ρ2, satisfying our constraints on G0 one can
define a conserved charge as follows. First find the canonical dual Killing vector, K̄
to 0λ, and construct the functional

L(K̄) + G(0λ + 1λ/ρ + 2λ/ρ2) = L(K̄) + S(0λ) + Q(2λ) (81)

where we have defined a new charge

Q(2λ) ≡ −1

k

∫

S2

ρ−2 % 2λ 0e 0e . (82)
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the spin-enlarged Poincaré algebra. On the other hand, given any infinitesimal gauge
transformation, g ≈ 1 + 0λ + 1λ/ρ + 2λ/ρ2, satisfying our constraints on G0 one can
define a conserved charge as follows. First find the canonical dual Killing vector, K̄
to 0λ, and construct the functional

L(K̄) + G(0λ + 1λ/ρ + 2λ/ρ2) = L(K̄) + S(0λ) + Q(2λ) (81)

where we have defined a new charge

Q(2λ) ≡ −1

k

∫

S2

ρ−2 % 2λ 0e 0e . (82)

25

Spin(3, 1) ⊗ (SO(3, 1) ! R3,1). The algebra can be computed explicitly resulting in
the following
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{S ÎĴ , LK̂L̂} = 0 . (78)

In total this is precisely the Lie algebra of G(oe) = Spin(3, 1)⊗ (SO(3, 1) ! R3,1).
Since the generating functionals themselves form a representation of the appro-

priate algebra, we can now construct two invariants from the Casimirs. As usual, the
first invariant is quadratic Casimir which yields the mass square:

C2 ≡ −M2 = PÎP
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