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The Question

* Suppose a spinor falls into a blackhole
*Feld 1s hidden behind horizon (spin measured by external fields)

* Charge neutral (neutrino)--No long range couplings except gravity

* How Is Intrinsic spin encoded In the gravitational field?
* Information about internal spin must be encoded at asymptotic infinity

*Set of Isometries must be enlarged
* Poincare--> Spin enlarged Poincare

* Phase space of asymptotically flat spacetimes can be generalized to allow for
representation of spin-enlarged symmetry algebra

* Generators of symmetry include new contribution from internal gauge group
* |n tetrad, generator of internal Spin(3,1) group gives rise to spin
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*Spin couples to the gravi-magnetic field similar to orbrtal angular momentum
*|n linearized limit the coupling Is ordinary dipole

G =81GT,, —0Oh,, = 871G T,,

o _
Tow = 5 (VD¢ = Dedbywd)

* Gravitational Gordon decomposition

s - A
Tuw = 5 ($7:Du¥ — Dutpyu) + 76 P00 J5”

| e—
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*Spin couples to the gravi-magnetic field similar to orbrtal angular momentum
*|n linearized limit the coupling Is ordinary dipole

G =81GT,, —0Oh,, = 871G T,,
[ 5
Tow = 5 (VD¢ = Dedbywd)
* Gravitational Gordon decomposition

Lo I ? 0! (5)
T,Lw Yo 5 (¢7uDu¢ o Dl/¢7/¢¢) i ZEMV Baajﬁ
Yields Orbital Ang. Mom.  Yields Spin Ang. Mom.

* Multipole expansion yields gravi-magnetic dipole field

(A)GE%BOCL A:G(L—I—S)Xf

* |ntrinsic spin sources gravi-magnetic field (spinors frame-drag)
* Spin also affects particle trajectory (not geodesic)

3(Sy-7)(Sa-7) — S1 - Ss

rd

Hspin—spin = 2G
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Fermions in Asymptotically Flat ST

* Work In first order Einstein-Cartan Gravity (contact torsion)

1 1
S:Sgrav+sferm SQTGU:E/M*GGR—E/(?M*GGM

S S :a/M%(ﬂ*eeeDw—l—D_kaeeew) —myn) keeee

* Boundary term must be added at asymptotic infinity
* Boundary term is finite in first order gravity
* Ensures functional differentiablility

* Jorsion Is present, but does not propagate
* All results expected to hold in 2nd order theory as well

* Symplectic form on spatial hypersurface i1s conserved on covariant phase space

1

o = )
Q:E/E*(Sw/\é(ee)—I—5/25(¢*eee)/\5¢+5¢/\5(*eee¢)
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* The local gauge group of tetrad is not just diffeomorphism group
* Have freedom to make internal Lorentz transformations:

& = Spin(3,1) x Dif f4
* Spin does not come from just Isometries of metric

* Metric Isometries yield linear momentum and orbrtal angular momentum
* [etrad isometries yield internal spin angular momentum
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* The local gauge group of tetrad is not just diffeomorphism group
* Have freedom to make internal Lorentz transformations:

& = Spin(3,1) x Dif f4
* Spin does not come from just Isometries of metric

* Metric Isometries yield linear momentum and orbrtal angular momentum
* [etrad isometries yield internal spin angular momentum

e — € =e+Lige+[)\¢ Lre = —|A¢€
, Need
wo = =) e e — DD L) = D
Oguv :‘:7#1/
*Fix a fiducial flat metric and tetrad compatible with It: : G,

Guv = N1J €, €
*Spin enlarged Poincare group Is iIsometry group that preserves the fiducial flat
tetrad: & = Spin(3,1) x Dif f4

e

&%) ~ Spin(3,1) ® (SO(3,1) x R>")

N
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Intrinsic Spin in Asymptotically Flat Spacetimes

* The local gauge group of tetrad is not just diffeomorphism group
* Have freedom to make internal Lorentz transformations:

& = Spin(3,1) x Dif f4
* Spin does not come from just Isometries of metric

* Metric Isometries yield linear momentum and orbrtal angular momentum
* [etrad isometries yield internal spin angular momentum

e — € =e+Lige+[)\¢ Lre = —[A¢
, Need
w — W =w+4+Ligw—DA Lrw = DA
| Og,uv = Wiy
*Fix a fiducial flat metric and tetrad compatible with It: : 0. 101

Guv = N1J €, €
*Spin enlarged Poincare group Is iIsometry group that preserves the fiducial flat
tetrad: & = Spin(3,1) x Dif f4

/ \‘ Internal and External Lorentz
B(°e,,) = Spin(3,1) ® (SO(3,1) x R*?) Groups are “locked’ to preserve
2 \/v iy tetrad (Rigid gauge t-forms)

¢ : Spin(3,1) — SO(3,1)
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* First assume existence of global symmetry
* Generators are boundary terms of constraint functionals

* tinstein-Cartan Gravity has additional gauge symmetry
* Diffeomorphisms: Hamiltonian and 3-diffeomorphism constraint
*| ocal L orentz: Gauss constraint

= 1
Q(K,) — 5D([_() D(K) N —ELZLK(*ee)w
2 Sl oy = —%/;m*)\ee

e Assume global tetrad isometry: Lzge = —|A, €]
* Define momentum and angular momentum as follows

Translation: {K, X = 0} P=D(K) = —%/ L (*ee)w
by
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Spin-enlarged Poincare Group on Phase space

* First assume existence of global symmetry
* Generators are boundary terms of constraint functionals

* tinstein-Cartan Gravity has additional gauge symmetry
* Diffeomorphisms: Hamiltonian and 3-diffeomorphism constraint
* | ocal Lorentz: Gauss constraint

— 1
_ 3 DIK) = —= 5
QR,) = §D(E) (K) k /82 Lg(xee)w
QA ) = 8GN G(A) = —l/ *\ee
k Jas
e Assume global tetrad isometry: Lzge = —|A, €]
* Define momentum and angular momentum as follows
Translation: {K, X = 0} P=D(K) = —%/ L (*ee)w
)Y

= 1 il
Rotation: {K, A} JtOt:D(K)—'_G()\):_E/ELR(*ee)w_E/E*)\ee
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* Noether charges follow from spin-enlarged Poincare algebra
*nternal and external Lorentz groups must be phased locked to get conserved
total angular momentum (including spin)

Boosts/Rot:
Lge=—[\¢€]

Qi = %Lﬁgﬁ*eeew—zﬁ*eeeﬁgw—@@{)\,*eee}w.

L e—
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Boosts/Rot:
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Noether Charges and Komar Integral

* Noether charges follow from spin-enlarged Poincare algebra
*nternal and external Lorentz groups must be phased locked to get conserved
total angular momentum (including spin)

Boosts/Rot:
Lge=—[\¢€] Quray = %2

L e—

EKw*eeew Yxeeelgy) — i\ xeeelt).
Orbit Spin

* Agreement between Noether charges, asymptotic integrals, and Komar integral
s obtained if and only If spin term Is included
* Under assumption of global tetrad isometry:

1 1
——/ *[K,e]w——/ xAee= Qi
k Jos k Jos

L — ————————
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Noether Charges and Komar Integral

* Noether charges follow from spin-enlarged Poincare algebra
*nternal and external Lorentz groups must be phased locked to get conserved
total angular momentum (including spin)

Boosts/Rot:
Lge=—[\¢€] Quray = %2

L e—

EKw*eeew Yxeeelgy) — i\ xeeelt).
Orbit Spin

* Agreement between Noether charges, asymptotic integrals, and Komar integral
s obtained if and only If spin term Is included
* Under assumption of global tetrad isometry:

1 1
_E/ *[K’Q]W_E/ xAee= Qi
D2 Ol RSN

R — —

* Can be rearranged to reproduce Komar integral

1 ~ Qo

Stk *dK:Q{K’)\}——/L[{ (m@*eeeew)
2k Jos: 2 Jx
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e Expand tetrad in power series e ="e+ ‘e/p+ %e/p* + ...

* Spin-enlarged gauge group defined by isometries of flat tetrad,
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* Spin-enlarged gauge group defined by isometries of flat tetrad,

* Phase space Is extension of Ashtekar, Engle, Sloan (arXiv:0802.2527)
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* Spacetime reduces to fiducial flat tetrad at asymptotic infinrty
e Expand tetrad in power series e ="e+ ‘e/p+ %e/p* + ...
* Spin-enlarged gauge group defined by isometries of flat tetrad, Ye

* Phase space Is extension of Ashtekar, Engle, Sloan (arXiv:0802.2527)

|. Tetrad I1s compatible with Beig-Schmidt metric

2. Fiducial flat tetrad is globally constant
(Allows for global gauge t-forms at lowest order)

3. Zeroeth and first order terms constrained to have even parity
(Eliminates log- and super-translation ambiguities)

4. First order term generalized from AES to allow for gauge t-forms
(Allows for parity even gauge t-forms at next to lowest order)

* Action Is explicitly finite, symplectic form well-defined and conserved
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Asymptotically Flat Phase Space

* Spacetime reduces to fiducial flat tetrad at asymptotic infinrty
e Expand tetrad in power series e ="e+ ‘e/p+ %e/p* + ...
* Spin-enlarged gauge group defined by isometries of flat tetrad, Ye

* Phase space Is extension of Ashtekar, Engle, Sloan (arXiv:0802.2527)

|. Tetrad I1s compatible with Beig-Schmidt metric

2. Fiducial flat tetrad is globally constant
(Allows for global gauge t-forms at lowest order)

3. Zeroeth and first order terms constrained to have even parity
(Eliminates log- and super-translation ambiguities)

4. First order term generalized from AES to allow for gauge t-forms
(Allows for parity even gauge t-forms at next to lowest order)

* Action Is explicitly finite, symplectic form well-defined and conserved

* Phase space Is not too restrictive
* Contains all familiar asymptotically flat solutions
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Asymptotic Expansion of Gauss functional

e Expand Gauss functional for spin(3,1) generator: x =%+ ;C &

1 2

G(x) =G +'G+°G
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Asymptotic Expansion of Gauss functional

1 2

* Expand Gauss functional for spin(3,1) generator: x ="x+ ;C + St

G(x) =G +'G+°G

1 0.,0_0
| *y e e
k/s &

1
__/ 0712 % O Oele 4 x1y Oc O¢)
S2

k
1
B _E/ p(x’x'ete+2x"x ete+x°x e’ + 2% x e’e)
S2
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Asymptotic Expansion of Gauss functional

1 2

* Expand Gauss functional for spin(3,1) generator: x ="x+ ;C + St

G(x) =G +'G+°G

'G = 040
1l
e o= O—I—O——/ p2(x*x ee 4+ 2%y Ye?e)
S2

k
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Asymptotic Expansion of Gauss functional

1 2
* Expand Gauss functional for spin(3,1) generator: x ="x+ ;C ©

G(x) =G +'G+°G

o= 0
'C = 0-=0
1
G = O—I_O_E/ ,0_2(*2X0606—|-2*0X0626)
52

* Gauss constraint contains two terms, define one as spin, one as charge

1

kS
1

kp? Je

sl U

O

s

&
]

G(A) = Q(*N) + S(°N)

94 U0 U %

o

e

o
|
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* Fiducial tetrad isometries fix first two orders of generators:
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Constructing L and S

* Fiducial tetrad isometries fix first two orders of generators:

Translations: KUY 0.1 Ok S W g
et £
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Constructing L and S

* Fiducial tetrad isometries fix first two orders of generators:

Translations: KUY 0.1 N Sl P -
H Ox £
n
05 o 2 . I R
Boosts/Rots: K7} = A{f7} eeloe) o Ayt =667 — 6567

Tuesday, June 16, 2009



Constructing L and S

* Fiducial tetrad isometries fix first two orders of generators:

Translations: KUY 0.1 N Sl P -
H Ox £
n
05 o 2 . I R
Boosts/Rots: K7} = A{f7} eeloe) o Ayt =667 — 6567

* Corresponding generators give linear and angular momenta
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Constructing L and S

* Fiducial tetrad isometries fix first two orders of generators:

Translations: KUY 0.1 N Sl P -
H Ox £
n
05 o 2 . A R
Boosts/Rots: K7} = A{f7} eeloe) o Ayt =667 — 6567

* Corresponding generators give linear and angular momenta

A L 1
Pl = D(KU}) = _ELLK{f}(*ee)w
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Constructing L and S

* Fiducial tetrad isometries fix first two orders of generators:

Translations: KUY 0.1 N Sl P -
H Ox £
n
05 o 2 . A R
Boosts/Rots: K7} = A{f7} eeloe) o Ayt =667 — 6567

* Corresponding generators give linear and angular momenta

. i 1
i U s e IS i j 1
P D(KY7) kLLK{I}(*ee)w LIJE——/ Lk{fj}(*ee)w
k Jos
JfO{:D([_{{jj})jLG()\{fj}):ij+5fj gl = —l/ AT e e
k Jos
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Constructing L and S

* Fiducial tetrad isometries fix first two orders of generators:

Translations: KUY 0.1 ¢ Sl P -
H Ox £
n
05 o 2 . A R
Boosts/Rots: K7} = A{f7} eeloe) o Ayt =667 — 6567

* Corresponding generators give linear and angular momenta
1

pl _ D([_{{f}) o _ELLK{f}(*ee)w

LIJE_E/ Lk{fj}(*ee)w
0>

75— DR L GO = L + 57

SijE—E/ *)\{f‘j}ee
0>

* Recall that Spin(3,1) and SO(3,1) subgroups are “locked”

¢ :spin(3,1) — s0(3,1)
PAEC gb()\{fj}):[_({fj}
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Constructing L and S

* Fiducial tetrad isometries fix first two orders of generators:

Translations: KUY 0.1 ¢ Sl P -
H Ox £
n
05 o 2 . A R
Boosts/Rots: K7} = A{f7} eeloe) o Ayt =667 — 6567

* Corresponding generators give linear and angular momenta

A L 1
Pl = D(KU}) = _ELLK{f}(*ee)w

LIJ = —%'/82 Lk{fj}(*ee)w
Sijz——/ *)\{f‘j}ee
k Jox

* Recall that Spin(3,1) and SO(3,1) subgroups are “locked”

75— DR L GO = L + 57

¢ :spin(3,1) — s0(3,1) ® . F(spin(3,1)) — F(s0(3,1))

EE EE——
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Symmetry Algebra
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Symmetry Algebra

Y ot R Spin(3,1) ® (SO(3,1) x R™")
SR E 9Kl p
[ RO =y
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Symmetry Algebra

(L1 DKLy — oI I o JIK [
(Li7 pRy — 9 KUipN Spin(3,1) ® (SO(3,1) x R**)
(PL. P71 = 0

(517 §KLY — oullk gLlJ _ o JIK gLl

(s17 pRy —

(s19 [KLy _ g
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Symmetry Algebra

(0l pEy _ 9 KlpI Spin(3,1) ® (SO(3,1) x R™")
[ RO =y

(st pky — Spin(3,1)®(50(3,1) x R>')
(@ En
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[ RO =y

| ee— R——

Spin(3,1) ® (SO(3,1) x R>!)

(577 ey
@il s
@EN, B9 = =N 2N)
QCN, sy = +Q(A,2N)
{QCN), P1} = 0
{QCM), Q(*X2)} = 0

| e——

Spin(3,1)®(S0(3,1) x R*)
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(0l pEy _ 9 KlpI Spin(3,1) ® (SO(3,1) x R
) = 0
(si4 pRy = g Spin(3,1)®(50(3,1) x R>')
(sl LKLy — g
QCN), LV} = —@(,2) {Jf(g, gL = 0
{QCN), 8"} = +Q(X'’,2\) {P',Q} = 0
{QCN, P} = 0 (Spin-enlarged) Poincare
{QCM), QCX2)} = 0 invariant charge
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Symmetry Algebra

(0l pEy _ 9 KlpI Spin(3,1) ® (SO(3,1) x R
{P, P} = 0
(si4 pRy = g Spin(3,1)®(50(3,1) x R>')
(gl Ky —
QCN, L7} = —Q(A™,*N) {Ji, Q) = 0
QCY, 57 = +Q(A,%A) P,QF =0
{QCN, P} = 0 (Spin-enlarged) Poincare
{QCM), QCX2)} = 0 invariant charge

e Casimir Invariants:

R A A 1 A Aa ISP
Cy = _M? = PfPI 04/02 = WfWI/PfPI = S(S+ 1) Wf — iefjf(ﬁPJ(LKL —I—SKL)
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