Gauge-Invariant Localization of Infinitely Many Gravitational Energies from All Possible Auxiliary Structures

J. Brian Pitts University of Notre Dame

12th Eastern Gravity Meeting EGM2009 Rochester Institute of Technology, Rochester, NY June 15-16, 2009

J. Brian Pitts University of Notre Dame :

Energy Localization Debate from 1910s

- Pseudotensor? 1916 (Einstein, 1923) for vs. (Schrödinger, 1918; Bauer, 1918) against.
- Reviews (Fletcher, 1960; Trautman, 1962; Goldberg, 1980; Szabados, 2004).
- ► $\mathfrak{T}^{\mu}_{\nu}\sqrt{-g} =_{def} T^{\mu}_{\nu}\sqrt{-g} + t^{\mu}_{\nu}\sqrt{-g}$ satisfies $\frac{\partial}{\partial x^{\mu}}(\mathfrak{T}^{\mu}_{\nu}\sqrt{-g}) = 0$ if (and only if) $G^{\mu}_{\nu} = T^{\mu}_{\nu}$. Here $t^{\mu}_{\nu}\sqrt{-g}$ is gravity pseudotensor.
- Problem is not lack of conserved quantities, but too many and lack of relationships among them (Anderson, 1967).
- ► Pseudotensors aren't tensors, not even geometric objects.
- ► Many (1st derivatives) can vanish at any point or worldline.
- Mix of coordinate artifacts and real physics, it seems.

J. Brian Pitts University of Notre Dame :

References

Tensorial Energy from Additional Background Structure?

- ► Flat background metric (Rosen, 1963; Cornish, 1964).
- ► Coordinate change $g_{\sigma\rho} \to e^{\pounds_{\xi}} g_{\sigma\rho}, u \to e^{\pounds_{\xi}} u, \eta_{\mu\nu} \to e^{\pounds_{\xi}} \eta_{\mu\nu}.$ *u* is matter (Grishchuk et al., 1984; Petrov, 2008).
- ► Problem of coordinate dependence reappears as gauge dependence: g_{σρ} → e[£]ξ g_{σρ}, u → e[£]ξ u, η_{µν} → η_{µν}.
- ▶ $\eta_{\mu\nu} \rightarrow e^{\pounds_{\xi}} \eta_{\mu\nu}$ affects energy density but no physical meaning.
- ► Flat connection $\Gamma^{\alpha}_{\mu\nu} \rightarrow e^{\pounds} \epsilon \Gamma^{\alpha}_{\mu\nu}$ (Sorkin, 1991; Fatibene and Francaviglia, 2003) has analogous problem.
- ▶ Orthonormal tetrad e^{μ}_{A} : extra local O(3,1) (Møller, 1964).
- Just moving lump in carpet, not flattening it out, with a flat metric, connection or tetrad: gauge-dependent energy.

J. Brian Pitts University of Notre Dame :

Traditional Coping Mechanism

- Blame the question and invoke equivalence principle ad hoc: "[a]nybody who looks for a magic formula for 'local gravitational energy-momentum' is looking for the right answer to the wrong question." (Misner et al., 1973, p. 467)
- But Noether's theorems don't care about the equivalence principle. Maybe a different kind of invariance fits what Noether yields?
- Value of messy math as opposed to geometrical shortcuts and picture-thinking (Kiriushcheva et al., 2008; Brown, 2005).
- \blacktriangleright ∞ many conserved energies (Bergmann, 1958; Komar, 1959).
- ► Drop *unique* localization, find new kind of co/invariance?

J. Brian Pitts University of Notre Dame :

No Need to Assume Energy is Unique

- Universal tacit undefended assumption of just one energy: 10 (or 16) components in one chart should suffice locally.
- ► (Goldberg, 1980) (Szabados, 2004, section 3.1.3); (Faddeev, 1982): "The energy of the gravitational field is not localized, i.e., a uniquely defined energy density does not exist."
- ▶ But no reason to believe in uniqueness—just a habit, default.
- ▶ ∞ many energies (Bergmann, 1958; Komar, 1959; Anderson, 1967; Regge and Teitelboim, 1974; Fatibene and Francaviglia, 2003). Any vector field gives one! Why can't they all be real?
- Uniqueness should have been rejected, localization could have been discovered 50 years ago by Bergmann.

J. Brian Pitts University of Notre Dame :

Gauge Independence of Energies from All Background Structures: Case of Flat Metrics

- ► Don't choose one background; choose them all! $\{(\forall \eta_{\rho\sigma}) \eta_{\rho\sigma}\}$.
- Gauge invariance: nothing depends on arbitrary choice of $\eta_{\rho\sigma}$.
- ► Infinite-component invariant energy { $(\forall \eta_{\rho\sigma}) t^{\mu\nu}[g_{\alpha\beta}, \eta_{\rho\sigma}]$ }, each conserved: $\partial_{1\mu}(\sqrt{-g}T^{\mu\nu} + \sqrt{-g}t^{\mu\nu}[g, \eta_1]) = 0$, $\partial_{1\mu}\eta_{1\alpha\beta} \equiv 0$, $\partial_{2\mu}(\sqrt{-g}T^{\mu\nu} + \sqrt{-g}t^{\mu\nu}[g, \eta_2]) = 0$,....
- ► Flat connection is analogous, but angular momentum problems (Chang et al., 2000) (c.f.) (Goldberg, 1958).
- {(∀η_{ρσ}) η_{ρσ}} a bit like group averaging (Marolf, 2002), but only collect into set, not add, gauge-dependent elements.

J. Brian Pitts University of Notre Dame :

Critique of Komar's Vector, Møller's Orthonormal Tetrad

- ► Komar's conserved quantities tensorial, depend on vector field.
- Problem: factor of 2 wrong answers for Komar (Katz, 1985; Katz and Ori, 1990; Iyer and Wald, 1994; Petrov and Katz, 2002; Fatibene and Francaviglia, 2003).
- ► Møller's orthonormal tetrad: accept them all?
- ► Worry: local Lorentz O(3, 1) group is gratuitous, so gauge invariance from *all tetrads* is Pickwickian.
- ► Flat metric $\eta_{\rho\sigma}$, flat connection $\Gamma^{\alpha}_{\rho\sigma}$ give invariant localization.
- ► $\eta_{\rho\sigma}$ or $\Gamma^{\alpha}_{\rho\sigma}$ needed in action *S* (Faddeev, 1982; Hawking and Horowitz, 1996; Fatibene and Francaviglia, 2003).
- Gauge-invariant multi-action $S[g_{\mu\nu}, \{(\forall \eta_{\rho\sigma}) \ \eta_{\rho\sigma}\}].$

J. Brian Pitts University of Notre Dame :

References

Spinorial Almost Geometric Objects, So No Exception

- ► Spinors in coordinates (Ogievetskii and Polubarinov, 1965; Bilyalov, 2002; Gates et al., 1983): $\langle r_{\mu\nu}, \psi \rangle$, where $r_{[\mu\alpha]} = 0$, $g_{\mu\nu} = \sum_{\alpha=A} \sum_{\beta=B} r_{\mu\alpha} \eta^{AB} r_{\beta\nu}$: symmetric square root.
- $\langle r_{\mu\nu}, \psi \rangle$ nonlinear spinor representation of coordinate transformations (up to sign), linear for conformal subgroup.
- ► No tetrad, no local Lorentz group; $r_{\mu\alpha}$ locally like tetrad in symmetric gauge.
- ► Any coordinates, but swap to get time first (Bilyalov, 1992).
- ► $\langle g_{\mu\nu}, \psi \rangle$ equivalent to $\langle r_{\mu\nu}, \psi \rangle$. Lie, covariant derivatives defined (Ogievetskii and Polubarinov, 1965; Szybiak, 1966).
- ► So energy localization proposed here suits spinors also.

J. Brian Pitts University of Notre Dame :

Pseudotensor in All Coordinates as Invariant Localization

- ► Tensors $t^{\mu\nu}$ from $\eta_{\rho\sigma}$ or $\Gamma^{\alpha}_{\rho\sigma}$: clear transformation properties.
- Ignoring global issues, can fix coordinates: each flat metric in Cartesian coordinates: η_{RS} = diag(-1, 1, 1, 1), Γ^A_{RS} = 0.
- ▶ Yields pseudotensor in $g_{\mu\nu}$ in every gauge/coordinate system.
- Invariant: for every chart U, $\{\forall U t^{\mu}_{\nu}[g_{\mu\nu}, \eta_{MN}]\}$.
- ► A *pseudotensor* is *okay*; just take it in *all* coordinate systems.
- ► Not ∞ many faces of same entity as with tensor, but ∞ many distinct entities, each in own adapted coordinate system.
- ► Not just metric, but natural bases enter definition of energy.
- ► Good pseudotensor maybe same for all solutions (Katz et al., 1997), maybe not (Nester, 2004).

J. Brian Pitts University of Notre Dame :

Objections to Pseudotensors Assume Unique Energy

- Worry: t^{μ}_{ν} vanishing at point or worldline in some coordinates.
- ▶ Reply: some but not all energies vanish there.
- Worry: Minkowski in unimodular spherical coordinates has nonzero Einstein pseudotensor (Bauer, 1918; Pauli, 1921).
- ► Reply: different coordinate system gives different energies.
- ► Worry: total energy in these coordinates diverges.
- ► Reply: spherical coordinate singularities, strongly curved basis.
- ▶ Worry: Einstein pseudotensor 0 [for r > 2M] in Schwarzschild in \approx Cartesian $\sqrt{-g} = 1$ coordinates (Schrödinger, 1918).
- Reply: Many energies exist; some vanish outside horizon, some don't (Petrov, 2005; Petrov, 2008).

J. Brian Pitts University of Notre Dame :

References

Noether Operator Is Invariant in New Sense

- Non-GR fields: ∇_μ(T^{μν}√-gξ_ν) = (T^{μν}√-gξ_ν),_μ = 0: conserved vector density T^{μν}√-gξ_ν is algebraic in ξ^ν.
- For GR, Noether's theorem gives nontensorial differential operator in ξ^ν (Schutz and Sorkin, 1977; Sorkin, 1977; Thirring and Wallner, 1978; Szabados, 1992).
- ► Feeding it natural basis yields pseudotensor components.
- Feeding it all natural bases yields pseudotensor in all coordinates: invariant in sense proposed here.
- Not unique due to possibility of adding curls.
- But even scalar fields in flat space-time have a bit of that problem (Callan et al., 1970): "improved" stress tensor.

J. Brian Pitts University of Notre Dame :

Logical Equivalence of All Conservation Laws to Einstein's Equations

- Fields: conservation because every field has Euler-Lagrange equations or (generalized) Killing vectors (Trautman, 1966).
- GR (without $\eta_{\rho\sigma}$ or $\Gamma^{\alpha}_{\rho\sigma}$): every field has E-L equations.
- ► GR: conservation from Einstein's equations without using matter equations (Anderson, 1967; Wald, 1984).
- ► Coordinate form $\frac{\partial}{\partial x^{\mu}}(\mathfrak{T}^{\mu}_{\nu}\sqrt{-g})=0$ in all coordinates.
- Sheds light on relation of GR to first law of thermodynamics: GR obviously entails it.

J. Brian Pitts University of Notre Dame :

Logical Equivalence of All Conservation Laws to Einstein's Equations

- Reverse entailment also holds (Anderson, 1967): pseudotensor law in all coordinates entails Einstein's equations!
- Illuminates spin-2 derivations of Einstein's equations (Einstein and Grossmann, 1996; Deser, 1970; Pitts and Schieve, 2001).
- Clearly, nothing logically equivalent to Einstein's equations depends viciously on coordinates.
- ► Thus pseudotensor laws don't depend viciously on coordinates.
- ► Pseudotensor laws give invariant localization of energy.
- ► Another way to see that pseudotensor localization is real.

J. Brian Pitts University of Notre Dame :

Angular Momentum Localization

- ► Generalization straightforward: invariant ∞-component angular momentum. Depends on x^µ explicitly.
- ► Matrix diag(-1,1,1,1) helps with angular momentum (Chang et al., 2000) (c.f.) (Goldberg, 1958).
- ► Symmetric total energy-momentum $\sqrt{-g}\mathfrak{T}^{\mu\nu}$ gives angular momentum complex $\mathfrak{M}^{\mu\nu\alpha} =_{def} \sqrt{-g}\mathfrak{T}^{\mu\nu}x^{\alpha} \sqrt{-g}\mathfrak{T}^{\mu\alpha}x^{\nu}$.
- $\blacktriangleright \ \frac{\partial}{\partial x^{\mu}}\mathfrak{M}^{\mu\nu\alpha} = 0 \text{ due to } \frac{\partial}{\partial x^{\mu}}(\sqrt{-g}\mathfrak{T}^{\mu\nu}) = 0 \text{ and } \mathfrak{T}^{[\mu\nu]} = 0.$
- Choice of pseudotensor (Katz et al., 1997; Nester, 2004) affects distributions of angular momenta.
- Using $\{(\forall \eta_{\rho\sigma}) \ \eta_{\rho\sigma}\}$, position 4-vectors replace x^{μ} .

J. Brian Pitts University of Notre Dame :

Conceptual Benefits of Local Energy Conservation

Lack of local energy conservation in GR in general or Big Bang cosmology has been invoked for unwarranted conclusions, such as:

- GR is false (Logunov and Folomeshkin, 1977; Logunov et al., 1986)—addressed in (Faddeev, 1982; Zel'dovich and Grishchuk, 1988; Grishchuk, 1990);
- Big Bang cosmology is false (by Robert Gentry)—addressed in (Pitts, 2004a; Pitts, 2004b);
- Big Bang cosmology is plausibly true and yet violates a principle so fundamental as to transcend physics into metaphysics (Bunge, 2000);

J. Brian Pitts University of Notre Dame :

- Big Bang cosmology is a heat sink for anomalous terrestrial heat (by D. Russell Humphreys)—addressed in (Pitts, 2009b);
- GR makes it easier than other theories for souls to affect bodies (Collins, 2008)—addressed in (Pitts, 2009a);
- 6. Universes with zero total energy can pop into being without violating energy conservation (Tryon, 1973; Thirring, 2003).
- Concerning 6, all energy densities needed for gauge invariance must vanish; impossible except maybe in boring cases.
- Detailed analysis undermines these 6 conclusions, if one tries.
 But new claims keep arising.
- Play with matches and keep fire extinguishers handy?
- Such claims would be unthinkable in ordinary field theories due to well-known gauge-invariant local conservation laws.

J. Brian Pitts University of Notre Dame :

Conclusions

- Ironic that Einstein took energy conservation as criterion for GR equations, yet GR is widely held to have no such law.
- \blacktriangleright Irony resolved by $\infty\text{-component}$ gauge-invariant localization.
- ► Natural bases, not just metric, determine energies.
- ► GR logically equivalent to conservation of ∞ many energies, hence *more* conserving of energy than other theories.
- Gauge (in)dependence largely orthogonal to question of 'right answers' for the conserved quantities.
- Non-uniqueness of relocalizing (Anderson, 1967), as in other field theories. Maybe case-by-case (Nester, 2004).
- ▶ Best functional form technically, make covariant in above way.

J. Brian Pitts University of Notre Dame :

Anderson, J. L. (1967).

Principles of Relativity Physics.

Academic, New York.

Bauer, H. (1918).

Über die Energiekomponenten des Gravitationsfeldes.

Physikalische Zeitschrift, 19:163.

Bergmann, P. G. (1958).

Conservation laws in general relativity as the generators of coordinate transformations.

Physical Review, 112:287.

Bilyalov, R. F. (1992).

Conservation laws for spinor fields on a Riemannian space-time manifold.

J. Brian Pitts University of Notre Dame :

Theoretical and Mathematical Physics, 90:252.

Bilyalov, R. F. (2002).

Spinors on Riemannian manifolds.

Russian Mathematics (Iz. VUZ), 46(11):6.

Brown, H. R. (2005).

Physical Relativity: Space-time Structure from a Dynamical Perspective.

Oxford University Press, New York.

Bunge, M. (2000).

Energy: Between physics and metaphysics. *Science and Education*, 9:457.

Callan, Jr., C. G., Coleman, S., and Jackiw, R. (1970).

J. Brian Pitts University of Notre Dame :

A new improved energy-momentum tensor. Annals of Physics, 59:42.

Chang, C.-C., Nester, J. M., and Chen, C.-M. (2000). Energy-momentum (quasi-) localization for gravitating systems.

In Liu, L., Luo, J., Li, X.-Z., and Hsu, J.-P., editors, *The Proceedings of the Fourth International Workshop on Gravitation and Astrophysics: Beijing Normal University, China, October 10-15, 1999.* World Scientific, Singapore. gr-qc/9912058v1.

Collins, R. (2008).

Modern physics and the energy-conservation objection to mind-body dualism.

J. Brian Pitts University of Notre Dame :

American Philosophical Quarterly, 45:31.

Cornish, F. H. J. (1964).

Energy and momentum in general relativity. I. The 4-momentum expressed in terms of four invariants when space-time is asymptotically flat.

Proceedings of the Royal Society A, 282:358.

Deser, S. (1970).

Self-interaction and gauge invariance.

General Relativity and Gravitation, 1:9. gr-qc/0411023v2.

Einstein, A. (1923).

The foundation of the general theory of relativity. In Lorentz, H. A., Einstein, A., Minkowski, H., Weyl, H.,

J. Brian Pitts University of Notre Dame :

Sommerfeld, A., Perrett, W., and Jeffery, G. B., editors, *The Principle of Relativity*. Dover reprint, New York, 1952. Translated from "Die Grundlage der allgemeinen Relativitätstheorie," *Annalen der Physik* **49** (1916) pp. 769-822.

Einstein, A. and Grossmann, M. (1996).

Outline of a generalized theory of relativity and of a theory of gravitation.

In Beck, A. and Howard, D., editors, *The Collected Papers of Albert Einstein, Volume 4, The Swiss Years: Writings, 1912-1914, English Translation.* The Hebrew University of Jerusalem and Princeton University, Princeton.

Translated from *Entwurf einer verallgemeinerten*

J. Brian Pitts University of Notre Dame :

Relativitätstheorie und einer Theorie der Gravitation, Teubner, Leipzig, 1913.

Faddeev, L. D. (1982).

The energy problem in Einstein's theory of gravitation (dedicated to the memory of V. A. Fock). Soviet Physics Uspekhi, 25:130.

Fatibene, L. and Francaviglia, M. (2003).

Natural and Gauge Natural Formalism for Classical Field Theories: A Geometric Perspective including Spinors and Gauge Theories.

Kluwer Academic, Dordrecht.

Fletcher, J. G. (1960).

Local conservation laws in generally covariant theories.

J. Brian Pitts University of Notre Dame :

Reviews of Modern Physics, 32:65.

Gates, Jr., S. J., Grisaru, M. T., Roček, M., and Siegel, W. (1983). Superspace, or One Thousand and One Lessons in Supersymmetry.

Benjamin/Cummings, Reading, Mass.

Goldberg, J. (1980).

Invariant transformations, conservation laws, and

energy-momentum.

In Held, A., editor, *General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein*, volume 1, pages 469–489. Plenum Press, New York.

Goldberg, J. N. (1958).

Conservation laws in general relativity.

J. Brian Pitts University of Notre Dame :

Physical Review, 111:315.

Grishchuk, L. P. (1990).

The general theory of relativity: Familiar and unfamiliar. *Soviet Physics Uspekhi*, 33:669.

Grishchuk, L. P., Petrov, A. N., and Popova, A. D. (1984). Exact theory of the (Einstein) gravitational field in an arbitrary background space-time.

Communications in Mathematical Physics, 94:379.

Hawking, S. W. and Horowitz, G. T. (1996).

The gravitational Hamiltonian, action, entropy, and surface terms.

Classical and Quantum Gravity, 13:1487.

gr-qc/9501014.

J. Brian Pitts University of Notre Dame :

Iyer, V. and Wald, R. M. (1994).

Some properties of Noether charge and a proposal for dynamical black hole entropy.

Physical Review D, 50:846.

gr-qc/9403028.

Katz, J. (1985).

Note on Komar's anomalous factor.

Classical and Quantum Gravity, 2:423.

Katz, J., Bičák, J., and Lynden-Bell, D. (1997).

Relativistic conservation laws and integral constraints for large cosmological perturbations.

Physical Review D, 55:5957.

gr-qc/0504041.

J. Brian Pitts University of Notre Dame :

Katz, J. and Ori, A. (1990).

Localisation of field energy.

Classical and Quantum Gravity, 7:787.

Kiriushcheva, N., Kuzmin, S., Racknor, C., and Valluri, S. (2008). Diffeomorphism invariance in the Hamiltonian formulation of General Relativity.

Physics Letters A, 372:5101. arXiv:0808.2623v1 [gr-qc].

Komar, A. (1959).

Covariant conservation laws in general relativity.

Physical Review, 113:934.

Logunov, A. A. and Folomeshkin, V. N. (1977).

J. Brian Pitts University of Notre Dame :

The energy-momentum problem and the theory of gravitation.

Theoretical and Mathematical Physics, 32:749.

Logunov, A. A., Loskutov, Y. M., and Chugreev, Y. V. (1986). Does general relativity explain gravitational effects? *Theoretical and Mathematical Physics*, 69:1179.

Marolf, D. (2002).

Group averaging and refined algebraic quantization: Where are we now?

In Jantzen, R. T., Ruffini, R., and Gurzadyan, V. G., editors, Proceedings of the Ninth Marcel Grossmann Meeting (held at the University of Rome "La Sapienza", 2-8 July 2000). World Scientific, River Edge, New Jersey.

J. Brian Pitts University of Notre Dame :

gr-qc/0011112.

Misner, C., Thorne, K., and Wheeler, J. A. (1973). *Gravitation*.

Freeman, New York.

Møller, C. (1964).

Momentum and energy in general relativity and gravitational radiation.

Kongelige Danske Videnskabernes Selskab, Matematisk-Fysiske Meddelelser, 34(3).

Nester, J. M. (2004).

General pseudotensors and quasilocal quantities.

Classical and Quantum Gravity, 21:S261.

Ogievetskii, V. I. and Polubarinov, I. V. (1965).

J. Brian Pitts University of Notre Dame :

Spinors in gravitation theory. Soviet Physics JETP, 21:1093.

Pauli, W. (1921).

Theory of Relativity.

Pergamon, New York.

English translation 1958 by G. Field; republished by Dover, New York, 1981.

Petrov, A. N. (2005).

The Schwarzschild black hole as a point particle. *Foundations of Physics Letters*, 18:477. gr-qc/0503082v2.

Petrov, A. N. (2008).

J. Brian Pitts University of Notre Dame :

Nonlinear perturbations and conservation laws on curved backgrounds in GR and other metric theories. In Christiansen, M. N. and Rasmussen, T. K., editors, *Classical and Quantum Gravity Research*, pages 79 – 160. Nova Science Publishers, Hauppauge, N.Y. arXiv:0705.0019.

Petrov, A. N. and Katz, J. (2002).

Relativistic conservation laws on curved backgrounds and the theory of cosmological perturbations.

Proceedings of the Royal Society (London) A, 458:319. gr-qc/9911025v3.

Pitts, J. B. (2004a).

Has Robert Gentry refuted Big Bang cosmology? On energy

J. Brian Pitts University of Notre Dame :

conservation and cosmic expansion.

Perspectives on Science and Christian Faith, 56(4):260–265.

Pitts, J. B. (2004b).

Reply to Gentry on cosmological energy conservation and cosmic expansion.

Perspectives on Science and Christian Faith, 56(4):278–284.

Pitts, J. B. (2009a).

Mental causation and the conditional conservation of energy: Question-begging or neuroscience; with a note on gravity. In preparation.

Pitts, J. B. (2009b).

Nonexistence of Humphreys' "volume cooling" for terrestrial heat disposal by cosmic expansion.

J. Brian Pitts University of Notre Dame :

Perspectives on Science and Christian Faith, 61(1):23–28.

Pitts, J. B. and Schieve, W. C. (2001). Slightly bimetric gravitation. General Relativity and Gravitation, 33:1319. gr-qc/0101058v3.

Regge, T. and Teitelboim, C. (1974). Role of surface integrals in the Hamiltonian formulation of general relativity.

Annals of Physics, 88:286.

Rosen, N. (1963).

Flat-space metric in general relativity theory.

Annals of Physics, 22:1.

J. Brian Pitts University of Notre Dame :

Gauge-Invariant Localization of Infinitely Many Gravitational Energies from All Possible Auxiliary Structures

Schrödinger, E. (1918).

Die Energiekomponenten des Gravitationsfeldes.

Physikalische Zeitschrift, 19:4.

```
Schutz, B. F. and Sorkin, R. (1977).
```

Variational aspects of relativistic field theories, with applications to perfect fluids.

Annals of Physics, 107:1.

Sorkin, R. (1977).

On stress-energy tensors.

General Relativity and Gravitation, 8:437.

Sorkin, R. D. (1991).

The gravitational-electromagnetic Noether operator and the second-order energy flux.

J. Brian Pitts University of Notre Dame :

Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, 435:635.

Szabados, L. B. (1992).

On canonical pseudotensors, Sparling's form and Noether currents.

Classical and Quantum Gravity, 9:2521.

Szabados, L. B. (2004).

Quasi-local energy-momentum and angular momentum in GR: A review article.

Living Reviews in Relativity, 7(4).

cited August 12, 2006.

Szybiak, A. (1966).

J. Brian Pitts University of Notre Dame :

On the Lie derivative of geometric objects from the point of view of functional equations.

Prace Matematyczne=Schedae Mathematicae, 11:85.

Thirring, W. and Wallner, R. (1978). The use of exterior forms Einstein's gravitation theory. *Revista Brasileira de Física*, 8:686.

Thirring, W. E. (2003).

God's traces in the laws of nature.

In *The Cultural Values of Science*, page 362. The Pontifical Academy of Sciences, Vatican City.

Trautman, A. (1962).

Conservation laws in general relativity.

J. Brian Pitts University of Notre Dame :

In Witten, L., editor, *Gravitation: An Introduction to Current Research*, page 169. John Wiley and Sons, New York.

Trautman, A. (1966).

The general theory of relativity. *Soviet Physics Uspekhi*, 89:319.

Tryon, E. P. (1973).

Is the universe a vacuum fluctuation?

Nature, 246:396.

```
Wald, R. M. (1984).
```

General Relativity.

University of Chicago, Chicago.

Zel'dovich, Y. B. and Grishchuk, L. P. (1988).

The general theory of relativity is correct!

J. Brian Pitts University of Notre Dame :

Soviet Physics Uspekhi, 31:666.

J. Brian Pitts University of Notre Dame :