Using Photons to Find (or Not Find) Supermassive Binary Black Holes

Julian Krolik Johns Hopkins University with thanks to: Cole Miller, Scott Noble, Constanze Roedig, Jeremy Schnittman, Ji-Ming Shi Electromagnetism—the Wonder Force

Spin1, massless excitations 10³⁶ x gravity!

Some charge carriers with rest-mass only 5 x 10⁻⁴ GeV—> very easily accelerated

Broad-band scattering from common materials—> focusing optics, wave optics spectroscopy

Significant inelasticity in scattering—> Easy detection

eLISA launch: 2034??

Multiple photon telescopes operational NOW

Problem: Distinguishing Binary from Solitary Supermassive Black Holes

Features of solitary supermassive black holes:

Most dark, detectable only inferentially via gravitational effects on surrounding stars or by weak radio/sub-mm emission (next talk)

At present, several percent extremely bright (AGN: quasars, Seyfert galaxies, etc.); sometimes extended jets, particularly visible in radio

dL/d ln v ~ const. from ~100 μ to ~100 keV + weaker radio; for some, substantial power to ~ TeV

Emission lines: optical/UV, $\Delta v/c \sim 10^{-3}$; often also ~ 10⁻²; 6.4 keV Fe Ka, $\Delta v/c \sim 1$

If motions of broad line material are gravitational (?), $r_{BLR} \sim 10^4 r_g$

Variable: "red noise" power spectra; for some, larger, coherent fluctuations

How Binary Supermassive Black Holes Might Differ

Supermassive Black Hole Binaries Form after Galaxy Mergers

Expect significant gas inflow in aftermath of galaxy merger, settling into a disk

For $q = M_2/M_1 > 4(h/r) \left(\int dz T_{r\phi} / \int dz p\right)^{1/2}$, a low surface density gap around the binary, and sometimes growing asymmetries near the outer disk's inner edge

When **prograde**, binary torques strong for r/a <~ 2 —> surface density peak at r/a ~ 2—2.5, but inflow continues across the gap (Farris et al. 2014, Shi & K 2015)

- e —> 0.6? (Roedig et al. 2012)
- When **retrograde**, no torques—> disk edge at $r/a \sim (1+e)$; rapid increase in e until GW emission dominates evolution (Schnittman & K 2015)
- **Obliquity** short-lived due to radially-varying quadrupole torques, precessioninduced radial mixing (Scheuer & Feiler 1996, Miller & K 2013, Schnittman & K 2015)

Gas flows across gap in distinct streams, modulated on orbital period if e > 1 or inner circumbinary disk asymmetric

- Accretion rate may be relatively large because associated with late stages of galactic mergers; no "damming" at inner edge of circumbinary disk
- Majority of accretion flow acquired by secondary—> q —> 1 (Roedig & Sesana 2014, Farris et al. 2014)
- "Mini-disks" can exist around each black hole within tidal limits—> $r_t/a \sim 0.3 Q^{0.3}$ (1-e) (Paczynski 1977, Sepinski et al. 2007)
- Main energy release near and outside each black hole's ISCO

Potential Radiative Contrasts between Binaries and Solitaries

The gap:

Does low surface density imply low surface brightness and a spectral gap?

Streams shock against the mini-disks: a different radiation regime?

Torqued streams shock against the circumbinary disk: another different radiation regime?

Potential Radiative Contrasts between Binaries and Solitaries

Orbital modulation, either amplitude or frequency:

Affecting either of the two shock locations?

Fe Ka from the mini-disks?

Optical emission lines, broad or narrow?

Accretion rate, therefore luminosity—in which band(s)?

Binary Modulation of Optical/UV Continuum (Graham et al. 2015, Liu et al. 2015)

A few problems:

If modulation due to streams, the time to radiate is

if $r_t >> r_{ISCO}$, h/r << 1 as usual; $t_{inflow} \sim \left[2\pi\alpha(h/r)^2\right]^{-1} (r_t/a)^{3/2} P_{bin} \gg P_{bin}$ $\alpha \equiv \int dz T_{r\phi} / \int dz p$ if r_t isn't >> r_{ISCO} , limited dissipation and therefore limited radiation; and the system lifetime is $t_{GW} \sim 10(\eta_{symm}/0.25)^{-1}(a/10r_g)^4 M_7$ hr

If modulation due to orbit, O(1) amplitude requires $v_{orb}/c \sim O(1)$

"Red" noise creates spurious periodicity ~ 1/3 duration

Orbital Frequency Modulation of Emission Lines (Boroson & Lauer 2009, Dotti et al. 2009, Bogdanovic et al. 2009, Decarli et al. 2010, Liu et al. 2014)

Problem 1: How to distinguish line profile structure due to orbital motion from internal structure

Problem 2: If broad line widths scale with orbital speed around one of the black holes, the line profiles almost always merge (Shen & Loeb 2010)

$$\Delta v_{\rm BLR} = f \left[(1,2)/(1+q) \right]^{1/2} (GM/r_{\rm BLR})^{1/2}$$

 $\Delta v_{\rm orb} = v_{\rm orb} \sin i = (GM/a)^{1/2} \sin i$

To separate profiles requires $\Delta v_{BLR} < \Delta v_{orb}$, but binding each BLR to its own black hole requires $r_{BLR} < r_t$. Combining for e=0,

$$[f(1,q)/(1+q)]^{1/2} < \Delta v_{\rm BLR}/v_{\rm orb} < \sin i$$

Best and more typical case as functions of orbital phase ($r_{BLR} =$ 0.5a, sin i = 1) (Shen & Loeb 2010) Orbital Frequency Modulation of Fe Ka (McKernan & Ford 2015)

Line profiles are generically relativistically broad; profile separation therefore requires $a/r_g < \sim 10-20$

Periodicity essential to distinguish orbital effects from intrinsic variations

But $P_{orb} = 3 (a/10r_g)^{3/2} M_7$ hr, and S/N often requires many hours of integration; in addition,

 $t_{\rm GW} \sim 10(\eta_{\rm symm}/0.25)^{-1}(a/10r_g)^4 M_7$ hr

Streams Shocking Against the Circumbinary Disk (Shi et al. 2012, Noble et al. 2012)

Shocks Heat the Gas at a Frequency Ω_{binary} - $\Omega_{\text{inner edge}}$

Shocks where Streams Strike Inner Disks

(Roedig, K & Miller 2014)

Accretion streams join "mini-disks" around each black hole, with majority of accretion going to the secondary

Streams shock at edges of "mini-disks" with high temperature

$$T_{s1,2} \simeq 6 \times 10^{10} (a/100r_g)^{-1} (1+q)^{-1} (q^{0.3}, q^{0.7}) \text{ K}$$

assuming a circular binary, as GW likely enforces

But cool quickly

 $t_{\rm cool}\Omega_{\rm mini} \simeq 0.01 \dot{m}^{-1} (a/100 r_g)^{-1/2} (1+q)^{-3/2} (q^{0.15}, q^{1.35})$

and brightly

 $L_{
m hot}/L_X \simeq 0.35 (a/100r_g)^{-1} (1+q)^{-1} (f_1 q^{0.3} + f_2 q^{0.7})$ $q \equiv M_2/M_1$ $f_{1,2} \equiv \dot{M}_{1,2}/\dot{M}_{
m tot}$

Distinctive Very Hard X-ray Components

Expect modulation on the binary orbital period

Strong Hard X-ray Components As Merger Pointers

Phrased in terms of L_{hot}/L_X , detection of these shocks could point to a merger in not many years:

 $T_{\rm GW} = (3/4)(1+z)(L_{\rm hot}/L_X)^{-4} \left[q(1+q)^2\right]^{-1} \left(f_1 q^{0.3} + f_2 q^{0.7}\right) M_7 \text{ yr}$

"Notches" Made by the Gap

See partial accounts in Roedig et al. 2012, Tanaka et al. 2012, Gultekin & Miller 2012, Kocsis et al. 2012, Tanaka & Haiman 2013, Tanaka 2013; also Farris et al. 2015

Absence of thermally-radiating material removes spectrum for a factor ~ 3 on either side of T₀

 $h\nu_0/4k_B \simeq 3.3 \times 10^4 \left[\dot{m}(\eta/0.1)^{-1}M_8^{-1}(a/100r_g)^{-3}\right]^{1/4} \text{ K}$

What Conditions Allow an Observable Notch?

Notch falls in middle of visible band for $\dot{m}(\eta/0.1)^{-1}M_8^{-1}(a/100r_g)^{-3} \simeq 2 \times 10^{-3}(1+z)^4$

Notched quasar is bright enough if $\dot{m}M_8(a/100r_g)^{-1} \gtrsim 0.05$

And gives a somewhat greater lead-time:

 $T_{\rm GW} \simeq 50(1+z)^{-13/3}q(1+q)^{-2}\dot{m}^{4/3}(hc/\lambda kT_0)^{16/3}(\lambda/5000 \text{\AA})^{16/3}M_8^{-1/3}$ yr

Photons from the Merger Proper?

Key uncertainty: quantity and location of gas immediately around the merging binary:

- Persistence of accretion through "decoupling" phase
- Inflow time in mini-disks vs. GW evolution time
- Fate of gas tidally-stripped from mini-disks by orbital compression
- Optical depth of gas can stretch post-merger cooling time well beyond GW emission; L_E characteristic timescale for electron scattering-regulated radiation in point-mass potential

Conclusions

- Orbital modulation harder to achieve than widely thought
- Emission line separation only in special cases
- Best bet distinctive features: spectral "notch" in optical/IR; hard X-ray bump: both found in last ~century—decades before merger