
INSTITUTE OF PHYSICS PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 21 (2004) 1465–1488 PII: S0264-9381(04)70112-4

Evolutions in 3D numerical relativity using fixed mesh
refinement

Erik Schnetter1,3, Scott H Hawley2 and Ian Hawke3

1 Institut für Astronomie und Astrophysik, Universität Tübingen, Auf der Morgenstelle,
D-72076 Tübingen, Germany
2 Center for Relativity, University of Texas at Austin, Austin, TX 78712, USA
3 Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, D-14476 Golm, Germany

E-mail: schnetter@aei.mpg.de, shawley@physics.utexas.edu and hawke@aei.mpg.de

Received 7 October 2003
Published 23 February 2004
Online at stacks.iop.org/CQG/21/1465 (DOI: 10.1088/0264-9381/21/6/014)

Abstract
We present results of 3D numerical simulations using a finite difference code
featuring fixed mesh refinement (FMR), in which a subset of the computational
domain is refined in space and time. We apply this code to a series of
test cases including a robust stability test, a nonlinear gauge wave and an
excised Schwarzschild black hole in an evolving gauge. We find that the mesh
refinement results are comparable in accuracy, stability and convergence to
unigrid simulations with the same effective resolution. At the same time, the
use of FMR reduces the computational resources needed to obtain a given
accuracy. Particular care must be taken at the interfaces between coarse and
fine grids to avoid a loss of convergence at higher resolutions, and we introduce
the use of ‘buffer zones’ as one resolution of this issue. We also introduce a new
method for initial data generation, which enables higher order interpolation in
time even from the initial time slice. This FMR system, ‘Carpet’, is a driver
module in the freely available Cactus computational infrastructure, and is able
to endow generic existing Cactus simulation modules (‘thorns’) with FMR with
little or no extra effort.

PACS numbers: 04.25.Dm, 04.20.−q, 04.70.Bw

1. Introduction

Currently many researchers are involved in efforts to predict the gravitational waveforms
emitted by the inspiral and merger of compact binaries. The direct numerical simulation of
these binary sources has been regarded as the best, if not only, way to obtain information
about the waves emitted during the merger event itself. Many numerical simulation methods

0264-9381/04/061465+24$30.00 © 2004 IOP Publishing Ltd Printed in the UK 1465

http://stacks.iop.org/cq/21/1465

1466 E Schnetter et al

are currently in use, and among the most popular of these is the use of finite difference
approximations to Einstein’s equations on a uniform mesh or grid.

It is often the case in simulations of physical systems that the most interesting phenomena
may occur in only a subset of the computational domain. In the other regions of the domain
it may be possible to use a less accurate approximation, thereby reducing the computational
resources required, and still obtain results which are essentially similar to those obtained
if no such reduction is made. In particular, we may consider using a computational mesh
which is non-uniform in space and time, using a finer mesh resolution in the ‘interesting’
regions where we expect it to be necessary, and using a coarser resolution in other areas.
This is what we mean by mesh refinement (MR). In the case of large-scale simulations,
where memory and computing time are at a premium, the effective use of MR can allow
for simulations achieving effective (fine-grid) resolutions which would be, on a practical
level, impossible otherwise. This also implies that some systems requiring a large dynamic
range of resolution may only be possible to simulate using mesh refinement. One hopes
that the use of fewer total grid points in an efficient mesh refinement application, as opposed
to a uniform, single grid or unigrid application, may result in a saving of computing time
required to arrive at a solution. It is always the case, however, that the reduction of memory
requirements afforded by mesh refinement, especially in 3D, could allow for highly accurate
simulations which simply may not fit in the memory of a given computer in a unigrid
setting.

In many simulations, it may be desirable for the computational mesh to adaptively refine
in response to some criterion such as the local truncation error. Such adaptive mesh refinement
(AMR) systems provide, ideally, a very high degree of computational efficiency for a given
problem. AMR schemes have been in use for decades [1], particularly in the fluid dynamics
community [2, 3]. Applications to astrophysical systems have been underway for quite some
time (e.g., [4–7]). In numerical relativity, Choptuik [8, 9] introduced many researchers to
AMR through his results using a 1D code for studying critical phenomena. Since the early
1990s efforts have been underway in the numerical relativity community to develop and
employ AMR applications in two and three dimensions, in studies of waves [10–15], critical
collapse [9, 16–18], the initial data problem [7, 19, 20], inhomogeneous cosmologies [21],
Schwarzschild black holes [12, 22, 23], characteristic methods [24] and a binary black-hole
system [25]. In several of these cases, the use of mesh refinement provided not only a more
efficient means of computing a solution, but even allowed the authors to obtain solutions
which would not have been possible via standard unigrid methods, given existing computing
technology at the time.

One step in the development of an AMR code is the ability to handle regions of different
resolution which are known in advance—fixed mesh refinement (FMR). Thus we view our
present work as in some sense a precursor to full 3D AMR simulations. However, the FMR
code may be sufficient in its own right, as full AMR may not be necessary for problems where
the region of interest is well-known beforehand.

An important point should be made regarding the benefits of mesh refinement for
reducing storage requirements (and computational costs). It is well known that pseudospectral
collocation methods offer exponential convergence as the number of collocation points is
increased (for sufficiently smooth functions, which are present in many systems of interest
to numerical relativists), and such methods are able to yield extremely high accuracies via
simulations which require storage afforded by a typical desktop computer [26–30]. Since FMR
makes use of finite difference methods, we can obtain at best only polynomial convergence as
we increase the resolution of all grids. Our choice of finite difference methods and FMR are
based on a choice of physical systems of interest, and on an observation.

Evolutions in 3D numerical relativity using fixed mesh refinement 1467

One reason we are motivated to use mesh refinement is that we are interested in systems
which are ‘non-smooth’ by the standards of pseudospectral methods: hydrodynamics and
gravitational collapse. In hydrodynamics, the formation of discontinuities—shocks—from
smooth initial data is a generic phenomena. In gravitational collapse, features may appear on
smaller and smaller spatial scales, requiring a means of resolving these features as they appear,
either via a truly adaptive algorithm (in which, for example, the truncation error is used as a
refinement criterion [1]) or a ‘progressive’ mesh refinement system in which nested grids are
‘turned on’ at smaller radii and higher resolutions as the simulation proceeds.

The observation mentioned above is that unigrid finite difference codes are generally
regarded as being significantly easier to develop than pseudospectral codes. Our interest,
from a code-development standpoint, has been to provide an infrastructure whereby existing
unigrid codes can be ‘endowed’ with mesh refinement in a way which is somewhat automatic,
such that the developer of the original unigrid code is spared the details of implementing mesh
refinement. If the introduction of mesh refinement does not significantly alter the dynamics
of the system, then one should be able to obtain results comparable to a high resolution
unigrid run via an FMR run with appropriately placed fine grids which share the resolution
of the unigrid run. In fact, this is the hope of this paper, and the criterion by which we
evaluate our results obtained by FMR: ideally, the use of mesh refinement should produce
results of comparable quality to a corresponding unigrid run, in terms of stability, accuracy
and convergence behaviour. Thus our mesh refinement infrastructure could, in applicable
cases, provide a service to the community of researchers who commonly develop unigrid
finite difference codes, by providing these researchers a means by which to achieve more
accurate results than their current computer allocations allow. It is in this spirit that we are
making the FMR system, called Carpet (authored by Erik Schnetter, with refinements offered
by several others), freely available as a driver thorn of the open-source Cactus computational
infrastructure [31–35].

2. Overview of our FMR method

2.1. Cactus and mesh refinement

Cactus is an application framework that provides some computational infrastructure such as
parallelization and disk I/O, and lets users specify the modules, called ‘thorns’, which contain
all the ‘physics’. The main difference between an application framework and a library of
subroutines is control inversion, meaning that it is Cactus calling the users’ routines, while the
main program is part of Cactus. The part of Cactus that controls the creation of initial data and
the time stepping is called the driver, which is a thorn that interacts with the Cactus scheduler
in order to determine which routines are applied to which grid at what time. Control inversion
has the important advantage that, by replacing the driver, one can change a Cactus application
from unigrid to mesh refinement without rewriting any of the user’s thorns.

In practice, the ability to use the same code with both unigrid and mesh refinement
drivers places restrictions on the implementation of a routine. For most evolution thorns, these
modifications are at most minor. Some thorns, particularly those solving elliptic equations,
require more substantial alterations. In most circumstances the restrictions imposed are only
technical points, and it should be simple for any new code to be implemented to work with a
unigrid or mesh refinement driver interchangeably. Our experience is also that analysis tools
for, for example, wave extraction or apparent horizon finding continue to work almost without
changes.

1468 E Schnetter et al

G0
0

1
1G0

1G

0G2

Figure 1. Base level G0
0 and two refined levels G1

j and G2
j , showing the grid alignments and

demonstrating proper nesting.

2.2. Mesh refinement method

The mesh refinement driver that we use is called Carpet and is available together with
the application framework Cactus. It uses the Berger–Oliger approach [1], where the
computational domain as well as all refined subdomains consists of a set of rectangular grids.
In particular, we base our scheme on the so-called ‘minimal Berger–Oliger’ setup popularized
by Choptuik [36]. In this simplified version of Berger–Oliger, the grid points are located on a
grid with Cartesian topology, and the grid boundaries are aligned with the grid lines. In our
version, we also allow fine grid boundaries to occur in between coarse grid points, as shown
in figure 1. (Note that this definition still allows, for example, spherical coordinate systems.)
Furthermore, there is a constant refinement ratio between refinement levels (described below).

We use the following notation. The grids are grouped into refinement levels (or simply
‘levels’) Lk , each containing an arbitrary number of grids Gk

j . Each grid on refinement level
k has the grid spacing (in one dimension) �xk . The grid spacings are related by the relation
�xk = �xk−1/Nrefine with the integer refinement factor Nrefine. An example is shown in
figure 1. In what follows we will assume that Nrefine is always set to 2. The base level L0

covers the entire domain (typically with a single grid) using a coarse grid spacing. The base
level need neither be rectangular nor connected. The refined grids have to be properly nested.
That is, any grid Gk

j must be completely contained within the set of grids Lk−1 of the next
coarser level, except possibly at the outer boundaries.

Although Cactus does allow both vertex and cell-centred grids, current relativity thorns
only use vertex centring. Hence Carpet currently only supports vertex-centred refinement, i.e.,
coarse grid points coincide with fine grid points (where fine grid points exist).

The times and places where refined grids are created and removed are decided by some
refinement criterion. The simplest criterion, which is also indispensable for testing, is manually
specifying the locations of the refined grids at fixed locations in space at all times. This is
called fixed mesh refinement. A bit more involved is keeping the same refinement hierarchy,
but moving the finer grids according to some knowledge about the simulated system, tracking
some feature such as a black hole or a neutron star. This might be called ‘moving fixed mesh
refinement’. Clearly the most desirable strategy is an automatic criterion that estimates the
truncation error, and places the refined grids only when and where necessary. This is what
is commonly understood by adaptive mesh refinement. Carpet supports all of the above in
principle, but we will only use fixed mesh refinement in the following. It should be noted that
automatic grid placement is a non-trivial problem (see, e.g., [37, 38]).

Evolutions in 3D numerical relativity using fixed mesh refinement 1469

t

Figure 2. Schematic for the prolongation scheme, in 1 + 1 dimensions, for a two-grid hierarchy.
The large filled circles represent data on the coarse grid, and smaller filled circles represent data
on the fine grid. The arrows indicate interpolation of coarse grid data in space and time, necessary
for the boundary conditions on the fine grid (explained in section 2.3).

t1
2

3

4

Figure 3. Schematic for the time evolution scheme, in 1 + 1 dimensions, for a two-grid hierarchy.
The large filled circles represent data on the coarse grid, and smaller filled circles represent data on
the fine grid. The algorithm uses the following order. 1: Coarse grid time step, 2 and 3: fine grid
time steps, 4: restriction from fine grid to coarse grid. Since the fine grid is always nested inside
a coarse grid, there are also coarse grid points (not shown) spanning the fine grid region (at times
when the coarse grid is defined) at the locations of ‘every other’ fine grid point; the data at these
coarse grid points are restricted (copied directly) from the fine grid data.

2.3. Time evolution scheme

The time evolution scheme follows that of the Berger and Oliger [1] AMR scheme, in which
one evolves coarse grid data forward in time before evolving any data on the finer grids. These
evolved coarse grid data can then be used to provide (Dirichlet) boundary conditions for the
evolution of data on the finer grids via prolongation, i.e., interpolation in time and space.
This is illustrated in figure 2. For hyperbolic systems, where a Courant-like criterion holds, a
refinement by a factor of Nrefine requires time step sizes that are smaller by a factor Nrefine, and
hence Nrefine time steps on level k + 1 are necessary for each time step on level k. At time steps
in which the coarse and fine grids are both defined, the fine grid data are restricted onto the
coarse grid (via a simple copy operation) after it has been evolved forward in time. If there
are more than two grid levels, then one proceeds recursively from coarsest to finest, evolving
data on the coarsest grid first, interpolating these data in time and space along boundaries of
finer grids, evolving the finer grid data, and restricting evolved data from finer to coarser grids
whenever possible. This is illustrated in figure 3.

For time evolution schemes that consist only of a single iteration (or step), the fine
grid boundary condition needs to be applied only once. Most higher order time integrations
schemes, such as Runge-Kutta or iterative Crank–Nicholson, are actually multi-step schemes
and correspondingly require the fine grid boundary condition to be applied multiple times. If
this is not done in a consistent manner at each iteration, then the coarse and the fine grid time
evolution will not couple correctly, and this can introduce a significant error. We explain this
in more detail in the appendix.

There are several ways to guarantee consistent boundary conditions on fine grids. Our
method involves not providing any boundary condition to the individual integration substeps,
but instead using a larger fine grid boundary, as demonstrated in figure 4. That is, each of the
integration substeps is formally applied to a progressively smaller domain, and the prolongation
operation re-enlarges the domain back to its original size. Note that this ‘buffering’ is done
only for prolongation boundaries; outer boundaries are handled in the conventional way. Also,
this is done only for the substeps due to the time integration scheme, so that the prolongation

1470 E Schnetter et al

previous time
first substep
second substep

after prolongation
final substep

Figure 4. Schematic for the ‘buffering’ during time integration. Shown is the left edge of a
refined region, which extends further to the right, which is integrated in time with a three-step ICN
method. At the filled points (in the interior), time integration proceeds as usual. The empty points
(near the boundary) are left out, because no boundary condition is given during time integration. A
prolongation after the time integration fills the empty points again. This whole scheme corresponds
to either of the steps labelled 2 and 3 in figure 3.

is applied at fine grid times when there is no corresponding coarse grid time. Note also that
the use of buffer zones is potentially more computationally efficient.

We emphasize that the use of these buffer zones is not always necessary. To our knowledge
the buffer zones are necessary only when the system of equations contains second spatial
derivatives, and a multi-step numerical method is used for time integration. This issue arises
for the BSSN system discussed below. We also give a simple example using the scalar wave
equation in section 4.1 and the appendix.

2.4. Inter-grid transport operators

As described above, the interaction between the individual refinement levels happens
via prolongation and restriction. For prolongation, Carpet currently supports polynomial
interpolation, up to quadratic interpolation in time, which requires keeping at least two previous
time levels of data. It also supports up to quintic interpolation in space, which requires using at
least three ghost zones. We usually use cubic interpolation in space, which requires only two
ghost zones. (Quadratic interpolation in space introduces an anisotropy on a vertex-centred
grid.) For restricting, Carpet currently uses sampling (i.e., a simple copy operation). These
transport operators are not conservative. Since our formulation of Einstein’s equation (see
below) is not in a conservative form, any use of conservative inter-grid operations offers no
benefit. However, the transport operators can easily be changed. (For more discussion of the
situations where conservative inter-grid operators are useful or not, see [39].)

2.5. Initial data generation

Initial data generation and time evolution are controlled by the driver Carpet. Initial data are
created recursively, starting on the coarsest level L0. This happens as follows: on refinement
level Lk , the initial data routines are called. This fills the grids on this level. Then the
refinement criterion is evaluated (which might be nothing more than a fixed mesh refinement
specification). If necessary, grids on a finer level Lk+1 are created, and initial data are created
there, and on all finer levels recursively. Then, the data from level Lk+1 are restricted to level
Lk to ensure consistency.

In many cases, the initial data specification is only valid for a single time t = 0, such as
when using a time-symmetric approach, or when solving an elliptic equation. However, for
the time interpolation necessary during prolongation (see above), it may be necessary to have
data on several time levels. One solution is to use only lower order interpolation during the
first few time steps. We decided instead, according to the Cactus philosophy, that the data that
are produced during the initial data creation should in principle be indistinguishable from data
produced by a time evolution. Hence we offer the option to evolve coarse grid data backwards

Evolutions in 3D numerical relativity using fixed mesh refinement 1471

t = + t∆ 0

t = + t / 2∆ 0

t = + t / 4∆ 0

t = 0
t = – t / 4∆ 0

t = – t / 2∆ 0

t = – t∆ 0

Figure 5. Schematic for initial data scheme, in 1+1 dimensions. Our use of quadratic interpolation
in time requires three time levels of coarse grid data in order to provide boundary data for evolution
on fine grids. To achieve this from the beginning of the evolution (without the use of a known
continuum solution with which to ‘pre-load’ these levels), we evolve our initial data (defined at
t = 0) both forwards and backwards one step in time. In this way, three time levels of coarse
grid data are always available to provide boundary data along the edges of fine grids. The data
at various times are denoted by fractions of the time step �t0 on the base grid. The coarsest grid
is shown by a solid line, a finer grid by a long-dashed line, and a still finer grid by a dotted line.
(We perform some additional backward evolution as well, which we describe in the main text. The
essence of the scheme, however, is given here.)

in time in order to provide sufficient time levels for higher order interpolation in time at fine
grid boundaries. This ensures that no special case code is required for the first steps of the
time evolution.

This initial data generation proceeds in two stages. First the data are evolved both
forwards and backwards in time one step, leading to the ‘hourglass’ structure illustrated
figure 5. This evolution proceeds recursively from coarsest to finest, so that all data necessary
for time interpolation are present. Note that this would not be the case if we evolved two
steps backwards in time, as there would not be enough data for the time interpolation for the
restriction operation between these two steps.

In the end we must provide initial data only at times preceding the initial time t = 0; i.e.,
the hourglass structure of figure 5 is invalid as an initial data specification in Cactus. Therefore
we perform in the second stage of this scheme one additional step backwards in time on each
level, leading to initial data at the times t0, t0 − �tk and t0 − 2�tk on each level Lk .

3. Physical system

The set of equations we solve are described in detail in [40], and although we briefly review
the material here, we suggest interested readers refer to the prior publication. The evolution
system is that of Shibata–Nakamura [41] and Baumgarte–Shapiro [42], the so-called BSSN
formulation. The physical quantities present in a typical ADM [43] evolution are the 3-metric
γij and the extrinsic curvature Kij . In the BSSN formulation, one instead evolves a different
set of variables: Kij is decomposed into its trace K and its trace-free part

Aij ≡ Kij − 1
3γijK, (1)

and one applies a conformal transformation,

γ̃ij = e−4φγij . (2)

We choose φ such that the determinant of γ̃ij , denoted by γ̃ , is 1.
Thus our evolved quantities are related to the ADM and physical quantities by

φ = 1
12 log(γ) (3)

γ̃ij = e−4φγij (4)

1472 E Schnetter et al

K = γ ijKij (5)

Ãij = e−4φ
(
Kij − 1

3γijK
)
. (6)

One also creates a new evolved variable �̃i , defined as

�̃i := �̃i
jkγ̃

jk. (7)

The evolution equations for these variables are given by

∂tφ = − 1
6αK + βk∂kφ + 1

6∂kβ
k (8)

∂t γ̃ij = −2αÃij + βk∂kγ̃ij + γ̃ik∂jβ
k + γ̃jk∂iβ

k − 2
3 γ̃ij ∂kβ

k (9)

∂tK = −DiDiα + α
(
Ãij Ã

ij + 1
3K2) + βi∂iK (10)

∂t Ãij = e−4φ[−DiDjα + αRij]TF + α
(
KÃij − 2ÃikÃ

k
j

)
+ βk∂ikÃij + Ãkj ∂iβk

+ Ãki∂jβ
k − 2

3 Ãij ∂kβ
k (11)

∂t�
i = −2∂jαÃij + 2α

(
�̃i

jkÃ
kj − 2

3 γ̃ ij ∂jK + 6Ãij ∂jφ
)

− ∂j

(
βk∂kγ̃

ij − γ̃ kj ∂kβ
i − γ̃ ki∂kβ

j + 2
3 γ̃ ij ∂kβ

k
)
, (12)

where Di is the covariant derivative corresponding to the 3-metric γij , Rij is the three-
dimensional Ricci tensor, and the ‘TF’ superscript denotes the trace-free part of the enclosed
expression.

The gauge conditions are given as follows. The lapse α is chosen as one of the Bona–
Massó [44] family of slicings,

∂tα = −α2f (α)(K − K0) (13)

where K0 ≡ K(t = 0), and f (α) is chosen to give us either harmonic slicing (f (α) = 1) or
a ‘1 + log’ slicing (f (α) = 2/α). In this paper, the shift will be held constant at the analytic
value in all cases.

We use the code described in [45, 46] and refer there for details of the finite differencing
scheme used.

For certain problems a small amount of artificial dissipation is useful. We use a dissipation
of the form

∂tu = −εh4(∂xxxx + ∂yyyy + ∂zzzz)u (14)

with the grid spacing h, which is described in [47]. Although this dissipation operator is
typically employed only in systems with first-order derivatives in time and space, we find
that its use in the BSSN system (which has first-order derivatives in time, and second-order
derivatives in space) is effective at reducing high-frequency oscillations (i.e., noise) in the
simulations, but has little effect on the overall convergence behaviour.

4. Tests

For simplicity we will present tests using only two levels containing one grid each, which we
will refer to as the ‘coarse grid’ and the ‘fine grid’. The fine grid is a box contained in the
larger coarse grid box, with the fine grid having a mesh spacing (in space and time) of half that
of the coarse grid. The only limitation on the number of grids is the available computational
resources, and we have successfully performed tests with up to 24 levels of refinement.

One of the principal criteria we use to evaluate the effectiveness of the FMR scheme is the
requirement of second-order convergence in the limit as the mesh spacing goes to zero. Thus

Evolutions in 3D numerical relativity using fixed mesh refinement 1473

-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.4 -0.2 0 0.2 0.4

u

x

∆x0=1/40
∆x0=1/80

∆x0=1/160
analytic

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-0.4 -0.2 0 0.2 0.4

er
ro

r
in

 u

x

1 * (error for ∆x0=1/40)
4 * (error for ∆x0=1/80)

16 * (error for ∆x0=1/160)

Figure 6. Result at 50 crossing times in the evolution of the wave equation with periodic boundaries,
for two-level runs at three different resolutions (1/40, 1/80 and 1/160). Here we show only data
for the coarse grid; the finer grid covers the box xi ∈ [−0.25, +0.25]. The left panel shows slices
along the x-axis of the (3D) function u found numerically, as well as the analytic (i.e. continuum)
solution. (In this graph the highest resolution data and the analytic solution appear to lie on top
of each other.) One can see a resolution-dependent phase shift in u. The right panel shows the
solution error, defined as the difference between the u obtained numerically and the continuum
solution. These error graphs have been scaled to demonstrate the second-order convergence of the
numerical results.

we run a given simulation many times at different resolutions. In our examples, we compare
against the exact solution and check the convergence of the solution error. We show such tests
only for the data on the coarsest grid, because the restriction operator ensures that the coarse
grid and fine grid data are identical.

4.1. Wave equation: periodic boundaries

We tested our code with a simple wave equation in flat space in Cartesian coordinates using
several different kinds of initial data and boundary conditions. The first such test was that
of sinusoidal plane waves in a 3D box with periodic boundary conditions. From a code-
development standpoint, we simply took an existing set of subroutines for solving the wave
equation in parallel and ran using the FMR driver instead of the usual unigrid driver. The
formulation of the wave equation we used was a single equation with second-order derivatives
in both time and space, i.e.

∂ttu = ∂i∂iu, (15)

which we solved using a leapfrog-like scheme. Second-order convergence was found, as
shown in figure 6.

An alternative formulation of the wave equation uses second-order derivatives in space
but only first-order in time. We write it in the form

∂tu = v (16)

∂tv = ∂i∂iu. (17)

This formulation is comparable to the ADM (and BSSN) formulations of the Einstein
equations. When this formulation of the scalar wave equation is evolved using ICN integration
without buffer zones, the result is only first-order convergent, as shown using a one-dimensional
example in figure 7. The same formulation evolved with buffer zones converges even at
extremely high resolution as shown in figure 8.

1474 E Schnetter et al

-0.05

 0

 0.05

 0.1

 0.15

-0.4 -0.2 0 0.2 0.4

sc
al

ed
 s

ol
ut

io
n

er
ro

r
in

 u

x

40 * (error for dx=1/(20*20))
43 * (error for dx=1/(20*23))
46 * (error for dx=1/(20*26))
49 * (error for dx=1/(20*29))

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.4 -0.2 0 0.2 0.4

sc
al

ed
 s

ol
ut

io
n

er
ro

r
in

 v

x

40 * (error for dx=1/(20*20))
43 * (error for dx=1/(20*23))
46 * (error for dx=1/(20*26))
49 * (error for dx=1/(20*29))

Figure 7. Scaled solution errors for the 1D scalar wave equation at 0.75 crossing times, discretized
without buffer zones. The left panel shows the error in the solution u, the right panel in its time
derivative v. At low resolutions, i.e. from 1/20 up to about 1/1280, the scheme seems to be
second-order convergent. However, at higher resolutions it becomes clear that this is not the case.
At lower resolutions, the refinement boundaries are visible as small discontinuities in the error of v

at x = ±0.25. At higher resolutions, the discontinuity develops an oscillating tail and propagates
through the simulation domain. It is instructive to see that eight convergence test levels were
necessary to see this behaviour numerically. Compare this against figure 8.

-0.02

 0

 0.02

 0.04

 0.06

 0.08

-0.4 -0.2 0 0.2 0.4

sc
al

ed
 s

ol
ut

io
n

er
ro

r
in

 u

x

40 * (error for dx=1/(20*20))
43 * (error for dx=1/(20*23))
46 * (error for dx=1/(20*26))
49 * (error for dx=1/(20*29))

-0.1

 0

 0.1

 0.2

 0.3

-0.4 -0.2 0 0.2 0.4

sc
al

ed
 s

ol
ut

io
n

er
ro

r
in

 v

x

40 * (error for dx=1/(20*20))
43 * (error for dx=1/(20*23))
46 * (error for dx=1/(20*26))
49 * (error for dx=1/(20*29))

Figure 8. Scaled solution errors for the 1D scalar wave equation at 0.75 crossing times, discretized
with buffer zones. The left panel shows the error in the solution u, the right panel in its time
derivative v. The refinement boundaries are visible as small discontinuities in the error of v at
x = ±0.25. The results are second-order convergent up to extremely high resolutions. It can also
be seen that the resolution 1/20 is clearly not yet in the convergence regime.

Having demonstrated the need for careful handling of refinement boundaries, and having
introduced buffer zones as an effective approach to that, we use buffer zones in all the remaining
tests discussed in this paper.

4.2. Wave equation: Gaussian pulse

We consider a Gaussian pulse that crosses a mesh refinement boundary, travelling from the fine
into the coarse region. This is supposed to mimic the case of gravitational waves propagating
from fine, inner grids and radiating out into coarser grids.

We use an effectively one-dimensional domain (planar symmetry in 3D) with x ∈
[−0.5, +0.5], and a coarse grid resolution of �x0 = 1/100. The region x > 0 is refined
by a factor of 2. The Gaussian pulse starts in the refined region and travels to the left. Figure 9

Evolutions in 3D numerical relativity using fixed mesh refinement 1475

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-0.4 -0.2 0 0.2 0.4

u

x

with refinement

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

-0.4 -0.2 0 0.2 0.4

er
ro

r
in

 u

x

with refinement
coarse unigrid

fine unigrid

Figure 9. The left panel shows a Gaussian pulse that has travelled through a refinement boundary
located at x = 0. The region x > 0 is refined. The right panel shows the difference to the
analytic solution, and shows two unigrid runs for comparison. The resolutions of the unigrid runs
correspond to the coarse and the fine regions in the mesh refinement run. As expected, the error
in the run with refinement is in between the errors of the two unigrid runs. The reflected part
of the pulse is very small; it has an amplitude of only 10−3 and is thus much smaller than the
discretization error in the pulse itself.

shows the pulse after it has crossed the interface, and compares the result to two unigrid
simulations. The errors that are introduced at the refinement boundary are very small and
converge to second order. In particular, at this resolution about 10−3 of the original pulse is
reflected by the refinement boundary.

4.3. Wave equation: 1/r , with excision

Another test we performed was the solution of the wave equation (15) using initial data which
scaled inversely with r, the distance from the origin. This was conceived as a useful step
before moving on to black holes [48], as the ‘puncture data’ [49] we use for the black holes
have elements which scale as 1/r in the vicinity of the puncture. Other systems with isolated
central masses may also be expected to have elements which scale in a similar fashion. The
1/r data are a static solution of the wave equation in 3D, and are compatible with the standard
Sommerfeld outgoing boundary condition. To handle the singularity at the centre, we ‘excise’
the centre of the computational domain by choosing some inner boundary at a finite excision
radius from the centre and filling the interior region with prescribed data. Thus in this test
we also have a test of the use of FMR in the presence of excision, which is commonly used
for the interiors of black holes in analogous simulations. We perform no evolution within this
excised region.

We use a full 3D grid with xi ∈ [−1, +1] and coarse grid resolutions of �x0 = 1/32
and �x0 = 1/64. The region xi ∈ [−0.5, +0.5] is refined by a factor 2, and the region
|xi | � 0.125 is excised. Graphs of the error at two different times in the evolution are shown
in figure 10, which also shows corresponding unigrid runs for comparison. We see that the
solution is fully convergent, and similar to the corresponding unigrid results in the region of
refinement. It is interesting to note that even outside this region, the FMR and unigrid results
are very similar for the ‘transient’ shown in the left frame; however, the late time (‘stationary’)
behaviour shown in the right frame reveals a notable difference between the FMR and unigrid
results outside the refined grid.

Having demonstrated the existence of convergent solutions of the wave equation for
oblique angles of incidence to refinement boundaries (in the 1/r case), and convergent

1476 E Schnetter et al

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

-1 -0.5 0 0.5 1

er
ro

r
in

 u

x

error for ∆x0=1/32
4 * (error for ∆x0=1/64)

error for unigrid ∆x0=1/64
4 * (error for unigrid ∆x0=1/128)

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

-1 -0.5 0 0.5 1

er
ro

r
in

 u

x

error for ∆x0=1/32
4 * (error for ∆x0=1/64)

error for unigrid ∆x0=1/64
4 * (error for unigrid ∆x0=1/128)

Figure 10. Solution error for evolutions of 1/r data at times t = 0.625 (left frame) and t = 5.0
(right frame), using radiation (Sommerfeld) boundary conditions. Here we show only the base
grid; the refined grid covers the domain xi ∈ [−0.5, +0.5]. The region |xi | � 0.125 is excised.
We see in the left frame that an initial transient moving outward from the refined region is still
resolved in a second-order-convergent manner after it passes through the refinement boundary.
At later times, the error settles down to the profile shown in the right frame. As expected, the
FMR results compare favourably with the unigrid results in the region covered by the refined grid.
(Note that, outside the refined region, the errors shown for the FMR results have effectively been
multiplied by a factor of four relative to the comparable unigrid results, giving the impression of
greater disagreement than is really present.)

solutions in which the amplitude of the reflected wave is significantly (roughly three orders of
magnitude) less than the amplitude of the transmitted wave, we now move on to full solutions
of Einstein’s equations. For more detailed calculations of reflection and transmission effects
at refinement boundaries, see [12, 13].

4.4. Robust stability

We have applied a robust stability test [50–52] to the BSSN formulation. This is a test that
is meant to supplement and extend an analytic stability analysis, especially in cases where
such an analysis is difficult or impossible (because the equations contain too many terms). A
numerical test has the advantage that it tests the complete combination of evolution equations,
gauge conditions, boundary conditions, as well as the discretization and the implementation,
and (in our case) the mesh refinement scheme. Thus, while a numerical test is not as reliable
as an analytically obtained statement, it is able to cover more general cases.

The robust stability test proceeds in three stages of increasing difficulty:

Stage I. Minkowski (or some other simple) initial data with small random perturbations.
The simulation domain is a three-dimensional box with periodic boundary conditions. The
perturbations should be linear, so we chose a maximum amplitude of 10−10. The periodicity
means that there is effectively no boundary, so that this stage is independent of the boundary
condition. A code is deemed to be robustly stable if it shows at most polynomial growth and
if the growth rate is independent of the grid resolution. This is different from other definitions
of stability, where exponential growth is often deemed to be stable if the rate of exponential
growth is independent of the grid resolution.

Stage II. The same as stage I, except that the boundaries in the x-direction are now Dirichlet
boundaries. In addition to the noise in the initial data, noise is also applied to these Dirichlet
boundaries. This tests the consistency of the formulation with the boundary conditions, but
without the complications of edges and corners.

Evolutions in 3D numerical relativity using fixed mesh refinement 1477

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 0 200 400 600 800 1000

L ∞
 H

am

t

Stage I

∆x0=1/50
∆x0=1/100
∆x0=1/200

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 0 200 400 600 800 1000

L ∞
 H

am

t

Stage II

∆x0=1/50
∆x0=1/100
∆x0=1/200

Figure 11. L∞-norm of the Hamiltonian constraint versus time for the robust stability test. The
left-hand side graph shows stage I where all boundaries are periodic. The right-hand side graph
shows stage II, which has noisy Dirichlet boundaries in the x-direction. The domain is essentially
one dimensional with x ∈ [−0.5, +0.5], and periodic in the y and z directions. The refined grid
covers the region x ∈ [−0.25, +0.25]. The constraint violation in corresponding unigrid runs (not
shown) has the same magnitude.

Stage III. The same as stage II, except that there are now Dirichlet boundary conditions in all
directions. This tests whether edges and corners are handled correctly by the combination of
the formulation and boundary conditions.

In accordance with [52] we chose an effectively one-dimensional, planar symmetric
domain that extends almost only in the x-direction with x ∈ [−0.5, +0.5]. The domain has
only three grid points in the y and z directions. Thus we have to omit stage III of the test here.
We used a resolution of 1/50, and refined the centre of the domain. Although the domain was
thus essentially one dimensional, the simulation was performed with the full three-dimensional
code.

Figure 11 shows the L∞-norm of the Hamiltonian constraint versus time for 1000 crossing
times for the stages I and II for three different resolutions. All tests were run without artificial
dissipation. The results show that our implementation is robustly stable.

4.5. Gauge wave

As another test of the BSSN system we implemented the gauge wave of [52]. From the typical
Minkowski coordinates {t̂ , x̂, ŷ, ẑ}, one defines new coordinates {t, x, y, z} via the coordinate
transformation

t̂ = t − Ad

4π
cos

(
2π(x − t)

d

)
(18)

x̂ = x +
Ad

4π
cos

(
2π(x − t)

d

)
(19)

ŷ = y (20)

ẑ = z, (21)

where d is the size of the simulation domain. In these new variables, the 4-metric is

ds2 = −H dt2 + H dx2 + dy2 dz2, (22)

1478 E Schnetter et al

-2.4e-08

-2.35e-08

-2.3e-08

-2.25e-08

-2.2e-08

-2.15e-08

-2.1e-08

 0.35 0.36 0.37 0.38 0.39 0.4

er
ro

r
in

 K
xx

 [u
ni

gr
id

]

x

no dissipation
with dissipation

Figure 12. Error in the extrinsic curvature component Kxx along a small part of the x-axis for a
unigrid simulation after 0.25 crossing times. The resolution, �x = 1/2560, is rather high. The
noise (that was not present in the initial data) can be significantly reduced by dissipation. It is
surprising to see that a unigrid simulation with the plain BSSN formulation shows this behaviour;
this might point to an instability in the system of equations.

where

H = H(x − t) = 1 − A sin

(
2π(x − t)

d

)
. (23)

This test provides us with an exact solution to which we can compare our numerical
results. In addition to the exact values α = √

H and gxx = H , we will compare the extrinsic
curvature Kij , for which the only nonzero component is

Kxx = − πA

d
√

H
cos

(
2π(x − t)

d

)
. (24)

Since βi = 0 in the analytic solution we do not evolve the shift but keep it set to zero at all
times.

For this simulation we find it useful to add dissipation to the evolution equations to
suppress high-frequency noise at very high resolutions. The reason is evident from unigrid
simulations at high resolutions, as demonstrated in figure 12.

The simulation domain was set up in the same way as in [52], which is also the same as
is used in section 4.4. That is, the simulation domain extended almost only in the x-direction
with x ∈ [−0.5, +0.5]. The domain has only three grid points in the y and z directions.
All boundaries are periodic. Although the domain is thus essentially one dimensional, the
simulation was performed with the full three-dimensional code. Figure 13 shows the results
after five crossing times for the metric component gxx , comparing refinement and unigrid runs.
We see perfect second-order convergence.

4.6. Schwarzschild black hole with excision

Next, we evolved a static Schwarzschild black hole in Kerr–Schild coordinates which are
manifestly static. The line element is

ds2 = −
(

1 − 2M

r

)
dt2 +

(
4M

r

)
dt dr +

(
1 +

2M

r

)
dr2 + r2 d
2 (25)

Evolutions in 3D numerical relativity using fixed mesh refinement 1479

-0.0004

-0.0002

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

-0.4 -0.2 0 0.2 0.4

er
ro

r
in

 g
xx

 [u
ni

gr
id

]

x

40 * (error for ∆x0=1/(40*20))
42 * (error for ∆x0=1/(40*22))
44 * (error for ∆x0=1/(40*24))
46 * (error for ∆x0=1/(40*26))

-0.0004

-0.0002

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

-0.4 -0.2 0 0.2 0.4

er
ro

r
in

 g
xx

x

40 * (error for ∆x0=1/(40*20))
42 * (error for ∆x0=1/(40*22))
44 * (error for ∆x0=1/(40*24))
46 * (error for ∆x0=1/(40*26))

Figure 13. Errors for a uniform grid (left) and with mesh refinement (right) after five crossing
times for the 3-metric component gxx in the gauge wave test case. The errors have been scaled
with the resolution according to second-order convergence.

where M is the mass of the black hole. We choose to use excision to handle the singularity. We
use the excision method together with one of the tests described in [45]. The shift is held static
at the analytic solution and the lapse is evolved using 1 + log slicing. For simplicity, we do not
search for an apparent horizon but merely excise those points within a cube with corners at
1M . This small excision region removes the divergences due to the singularity while retaining
some of the steep gradients. However, as noted by [53, 54], this does not guarantee that the
future light cone at the excision boundary is contained within the excised region.

We evolve only one octant of the grid to take advantage of the symmetries present. We
use a coarse grid spacing of �x0 = 0.4M and �t0 = 0.1M with 293 points, giving an outer
boundary at 10M (ignoring two symmetry points and two outer boundary points). The fine
grid also contains 293 points. The points are not staggered about the origin, so there is always
a grid point at r = 0 which must be excised.

We compare the runs using mesh refinement with simulations using the unigrid code as
described in [45, 46]. The coarse unigrid test is identical to the coarse grid in the simulation
using refinement. That is, 293 points are used with a grid spacing of �x = 0.4M giving an
outer boundary at 10M . For the medium unigrid run, the resolution is doubled whilst the
outer boundary location is held fixed, giving the same effective resolution near the excision
region as the simulation using refinement. That is, 553 points are used with a grid spacing
of �x = 0.2M . To compare with the high resolution run using refinement, we also perform
a unigrid run with the same effective resolution. That is, 1053 points are used with a grid
spacing of �x = 0.1M .

Results showing the norm of the change of the lapse in time are shown in figure 14. Firstly
we note that the use of refinement combined with an excision boundary has no qualitative
effect on the simulation. As in [45] the change in the lapse shows an exponentially damped
oscillation in the absence of instabilities.

However, in this case we do see an exponentially growing instability which sets in only
at the highest resolutions. By tracing back the magnitude of this mode we see that it appears
to come from floating point round-off error at the initial time. It appears in runs both with
and without mesh refinement and the growth rate is the same in both cases. The origin of this
instability is unclear, especially as very similar simulations with the same resolutions were
shown to be stable in [45]. However, the important point for this paper is that the stability of
the simulations is independent of the mesh refinement.

1480 E Schnetter et al

 1e-20

 1e-15

 1e-10

 1e-05

 1

 0 500 1000 1500 2000

||∂
t α

 ||
2

Time (M)

∆x0=0.4 unigrid
∆x0=0.2 unigrid
∆x0=0.1 unigrid
∆x0=0.4 Carpet
∆x0=0.2 Carpet

Figure 14. The rms of the change in the lapse with time. As in [45] we see an exponentially damped
oscillation as the system settles down. However, at sufficiently high resolution an instability sets
in. This appears to come from floating point round-off error at the initial time and is clearly not
caused by mesh refinement.

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4 6 8 10

H
am

ilt
on

ia
n

x

40 * (Hamiltonian for ∆x0=0.4 unigrid)
41 * (Hamiltonian for ∆x0=0.2 unigrid)
42 * (Hamiltonian for ∆x0=0.1 unigrid)
41 * (Hamiltonian for ∆x0=0.4 Carpet)
42 * (Hamiltonian for ∆x0=0.2 Carpet)

Figure 15. Second-order convergence of the Hamiltonian constraint for the Schwarzschild black
hole at t = 500M . For the results using mesh refinement we plot the results using the finest
possible level, causing a ‘jump’ at the interface between the fine and coarse grids. We see that
the mesh refinement simulations converge to second order except at the excision boundary. The
simulation with refinement has comparable accuracy to the unigrid run with the same effective
resolution near the excision boundary, but is less accurate away from this region.

The convergence of the Hamiltonian constraint at t = 500M is shown in figure 15,
which should be compared with figure 3 in [45]. Second-order convergence for the unigrid
and mesh refinement simulations are clear away from the excision boundary, whilst at the
excision boundary the convergence is not so obvious due to the low resolution. The error

Evolutions in 3D numerical relativity using fixed mesh refinement 1481

Table 1. Computational resources required to evolve the single black hole with excision to t = 2M

with various grid sizes. The results using refinement give comparable results to unigrid results
with the same effective resolution whilst using approximately 30% of the resources. These results
used a 2.8 GHz Intel Xeon processor with the Intel version 7 compilers.

Effective Refinement Memory Real (user) time
resolution (M) Grid size levels use (MB) (s)

0.4 25 1 58 18.0 (17.6)
0.2 25 2 114 85.5 (84.7)
0.2 50 1 303 222.1 (219.4)
0.1 50 2 695 957.6 (950.8)
0.1 100 1 2024 3337.9 (3309.9)

in the mesh refinement runs is comparable to the unigrid runs with the same effective
resolution, although only near the excision boundary are the full benefits seen. Given the
computational resources required, illustrated in table 1, the benefits of mesh refinement are
clear.

5. Conclusions

We have shown comparisons of results obtained via fixed mesh refinement (FMR) techniques
and via standard unigrid methods. Ideally, the appropriate use of FMR should produce results
very similar in accuracy to the corresponding unigrid results, while retaining the stability
and convergence properties of the unigrid simulations. ‘Corresponding’ in this case implies
that the unigrid simulation has the same resolution as the finest grid of the FMR simulation.
This ideal is only expected to hold for simulations where most of the ‘interesting behaviour’
occurs in a limited region which is covered by refined grids, such as in simulations of compact
objects.

We find that particular care must be taken at boundaries between coarse and fine grids, in
order to retain stability and convergence. In cases where the system contains second spatial
derivatives and a multi-step time integration method is used, we introduce buffer zones to
guarantee the convergence of the mesh refinement implementation. The need for these buffer
zones can be clearly seen in very fine resolution simulations of the wave equation when written
in ‘mixed’ form (with second spatial derivatives and first derivatives in time). The same effects
are seen in simulations of gauge waves even at intermediate resolutions when using the BSSN
formulation in a similar mixed form.

In order to use parabolic interpolation in time, even from the initial time, we designed a
scheme by which data are initially evolved forwards and backwards in time. This means that
the fine grid evolution can begin with three time levels of coarse grid data with which to do
the time interpolation.

We are able to obtain results from FMR simulations which compare favourably with
corresponding unigrid simulations for the following systems: the wave equation with 1/r data
and excision near the origin, robust stability tests, a nonlinear gauge wave, and a Schwarzschild
black hole with excision. The robust stability tests indicate that numerical noise combined with
inter-grid transport operations will not lead to exponential blow ups, and that the introduction
of refinement boundaries does not produce instabilities. Both the wave equation test and the
gauge wave test show that proper second-order convergence can be obtained irrespective of
waves propagating through the interfaces between coarse and fine grids. For the case of the
Schwarzschild black hole, although we do see an instability at high resolutions, this instability

1482 E Schnetter et al

is present in the unigrid system as well. At lower resolutions, we see stable behaviour showing
close agreement between FMR and unigrid results.

There are few other implementations of mesh refinement in more than one dimension in
numerical relativity with which to compare. The method of [18] is very close to ours. However,
it is an axisymmetric code designed to evolve relativistic scalar fields. The code presented
in [25] uses the ADM formalism (which is known to be unstable) and exhibits problems
at the refinement boundaries. In the implementation of [13] which uses Paramesh [55], all
refinement levels are evolved using the same time step size. This avoids the difficulties that we
observe in obtaining convergence at refinement boundaries. However it may be less efficient,
especially where a large range of refinement levels is employed. Our implementation provides
both the full efficiency of the Berger–Oliger method and is a generic interface allowing the
simple implementation of other formulations and systems such as relativistic hydrodynamics.

Finally, we note that the evolutions described in this paper were performed by taking
routines for unigrid simulations of each physical system of interest, and after only slight
modifications to these routines, the original unigrid driver was exchanged for the ‘Carpet’
FMR driver. The application of FMR techniques to existing unigrid systems is thus something
which, from a code development viewpoint, can be performed generally. A clear advantage
of this approach is that most existing analysis tools (such as for wave extraction or apparent
horizon finding) will continue to work. Thus we invite other researchers to make use of our
freely available code to perform their finite-difference-based simulations in an FMR setting,
and thus achieve higher accuracies with less computing resources than their current unigrid
simulations may require.

Acknowledgments

We thank Bernd Brügmann and Nils Dorband for their early contributions to the work on the
wave equation in FMR, Tom Goodale, Gabrielle Allen and the Cactus team for their assistances
regarding the infrastructure development of Cactus which makes FMR possible, and Edward
Seidel for much encouragement over the past years. We also thank our collaborators in
Wai-Mo Suen’s WuGrav group, with which we shared an early version of the code. Finally
we thank Richard Matzner, Bernd Brügmann and Denis Pollney for their helpful comments
regarding the preparation of this manuscript. Work on this project was funded by the AEI, the
DFG’s Collaborative Research Centre SFB 382 and by NSF grant PHY 0102204.

Appendix. Coupling coarse and fine grid time evolution

When certain formulations of the equations are evolved with multi-step time integration
methods, we find that the standard Berger–Oliger approach leads to a loss of convergence
at the boundaries of fine grids. We will consider only second-order methods here. We will
argue that the use of Berger–Oliger style prolongation to find boundary conditions for refined
grids at the intermediate steps causes a second-order truncation error after a fixed number of
time steps. Therefore the global error will be the first order for a hyperbolic system where to
integrate to a fixed time the number of time steps increases with the grid resolution.

We first give an example, considering a simple one-dimensional example on an infinite
domain. The wave equation

∂2
t u = ∂2

xu (A.1)

Evolutions in 3D numerical relativity using fixed mesh refinement 1483

can be reformulated into a system that is first order in time, but still second order in space:

∂tu = v (A.2)

∂tv = ∂2
xu. (A.3)

Discretizing this system on a uniform grid in space and time, we represent the function u and
v through

u(t, x) = Un
i (A.4)

v(t, x) = V n
i (A.5)

at the collocation points t = n�t, x = i�x, where n and i number the grid points in the
temporal and spatial directions, and �t and �x are the temporal and spatial grid spacings,
respectively. The ratio α = �t/�x is the CFL factor. h will be used to refer to terms that are
order �x or �t .

For the spatial discretization of the operator ∂2
x we will consider the second-order centred

differencing stencil

D2
xF (x) := 1

(�x)2
(F (x − �x) − 2F(x) + F(x + �x)). (A.6)

For time integration we consider one form of the ICN (iterative Crank–Nicholson) method.
It consists first of an Euler step

TE[F0] := F0 + �t∂tF0 (A.7)

and then several (in our case, two) ICN iterations

TI [F0, F] := F0 + �t∂t
1
2 (F0 + F) (A.8)

so that the overall ICN integration with two iterations is given by

TICN(2)[F0] := TI [F0, TI [F0, TE[F0]]]. (A.9)

Note that there exist several slightly different variants of the ICN method.
This discretization is correct up to second order, which means that for a fixed CFL factor

α, the discretization error is O(h2). This means also that functions f (t, x), which depend on
t and x in a polynomial manner with an order that is not higher than quadratic, are represented
exactly, i.e. without discretization error. (Such functions f can be written as

f (t, x) :=
2∑

p=0

2∑
q=0

Cpqt
pxq (A.10)

with constant coefficients Cpq .)

A.1. Performing a single step

It is illustrative to perform a time integration step by step. We will use for that the solution of
the wave equation

u(t, x) = 1
2 t2 + 1

2x2 (A.11)

v(t, x) = t (A.12)

which will test whether the formulation is indeed capable of representing all functions of
form (A.10).

1484 E Schnetter et al

Starting from the exact solution at time t0,

U(t0, x) = 1
2 t2

0 + 1
2x2 (A.13)

V (t0, x) = t0, (A.14)

the result of the Euler step of the ICN integration is

U(0)(t0 + �t, x) = U(t0, x) + �tV (t0, x) (A.15)

= 1
2 t2

0 + 1
2x2 + (�t)t0 (A.16)

V (0)(t0 + �t, x) = V (t0, x) + �tD2
xU(t0, x) (A.17)

= t0 + �t (A.18)

where F (k) denotes the result after k ICN iterations. In these expressions, U(0)(t0 + �t, x)

differs from the true solution U(t0 + h, x) by a term O(h2).
The first ICN iteration then leads to

U(1)(t0 + �t, x) = U(t0, x) + �t 1
2 (V (t0, x) + V (0)(t0 + �t, x)) (A.19)

= 1
2 t2

0 + 1
2x2 + �tt0 + 1

2 (�t)2 (A.20)

= 1
2 (t0 + �t)2 + 1

2x2 (A.21)

V (1)(t0 + �t, x) = t0 + �t 1
2

(
D2

xU(t0, x) + D2
xU

(0)(t0 + �t, x)
)

(A.22)

= t0 + �t (A.23)

which is already the correct result. The second ICN iteration does not change the above
expressions.

A.2. Mesh refinement

Let us now introduce mesh refinement, so that the spatial and temporal resolution is not
uniform any more. Let the grid points be staggered about the origin, so that the grid points
with x < 0 have a coarse spatial grid spacing 2�x, and the grid points with x > 0 have a
fine spatial grid spacing �x. Let the CFL factor α remain uniform, so that the temporal grid
spacing is correspondingly 2�t for x < 0 and �t for x > 0. We will use the Berger–Oliger
time stepping scheme, which is explained in section 2.3 and illustrated in figure 3 of the main
text.

The discretization of ∂2
x needs so-called ghost points on the fine grid, which are filled by

prolongation. Our third-order polynomial spatial prolongation operator is given by

PS[F](x) :=
{
F(x) when aligned
1

16 [−1, +9, +9,−1] · F(x + [−3,−1, +1, +3]�x) otherwise
(A.24)

and the second-order polynomial temporal prolongation operator by

PT [F](x) :=
{
F(t) when aligned
1
8 [−1, +6, +3] · F(t + [−3,−1, +1]�t) otherwise

(A.25)

where [· · ·] denotes a vector, and the operator (·) a dot product.
Let us now consider a time evolution of the above solution (A.11), (A.12). According to

the Berger–Oliger time stepping scheme, the coarse grid evolution happens as on a uniform

Evolutions in 3D numerical relativity using fixed mesh refinement 1485

grid. The fine grid can now be evolved in two different ways: (a) with a Dirichlet boundary
condition from prolongation from the coarse grid, or (b) without a boundary condition, i.e.
only as an IVP (as opposed to an IBVP). In case (b), the ‘lost’ points have to be filled by
prolongation after the time step; in that case, prolongation therefore has to fill not 1, but k + 1
grid points for an ICN integration with k iterations. This is illustrated in figure 4 of the main
text.

A.3. ICN integration with prolongation

Let us examine case (a) in more detail, in which case the fine grid boundary values at x < 0 are
given through prolongation. For the solution, (A.11), (A.12), time integration and prolongation
are exact, hence it is for x < 0

U(k)(t0 + �t, x) = 1
2 (t0 + �t)2 + 1

2x2 (A.26)

V (k)(t0 + �t, x) = t0 + �t (A.27)

for all ICN iterations k. (This assumes that all ICN iterations end at the final time. There are
also different ways of expressing ICN.)

The Euler step then leads to, for x > 0,

U(0)(t0 + �t, x) = 1
2 t2

0 + 1
2x2 + �tt0 (A.28)

V (0)(t0 + �t, x) = t0 + �t (A.29)

as in (A.15)–(A.17) above. For all values of x, this can be written as

U(0)(t0 + �t, x) = 1
2 (t0 + �t)2 + 1

2x2 − �(x > 0) 1
2 (�x)2 (A.30)

V (0)(t0 + �t, x) = t0 + �t (A.31)

by using the � function, which is defined as

�(L) =
{

0 when L is false
1 when L is true.

(A.32)

The first ICN iteration leads to

U(1)(t0 + �t, x) = 1
2 (t0 + �t)2 + 1

2x2 (A.33)

V (1)(t0 + �t, x) = t0 + �t + �(0<x <H) 1
2α2�t . (A.34)

On a uniform grid, and for our solution u, the first ICN iteration is already exact. In general,
the first ICN iteration should lead to an error which is O(h2). This is here not the case; clearly
V (1) has an O(h) error. However, the error is confined to a region of length �x, so an integral
norm of the error can be O(h2); it is not clear what this means in practice.

The result of the second ICN iteration is

U(2)(t0 + �t, x) = 1
2 (t0 + �t)2 + 1

2x2 + �(0<x <H) 1
4α2(�t)2 (A.35)

V (2)(t0 + �t, x) = t0 + �t . (A.36)

This expression is the final result of the first fine grid time step. It has an error that is O(h2)

or O(h3) in an integral norm. As noted above, a local error that is O(h2) will lead to a
global error of O(h) when considered at a fixed time. That is, the method is only first-order
convergent.

1486 E Schnetter et al

A third ICN step—that we do not perform, but it would be possible to do so—would
result in

U(3)(t0 + �t, x) = 1
2 (t0 + �t)2 + 1

2x2 (A.37)

V (3)(t0 + 2�t, x) = t0 + �t + [−2�(0 < x < �x) + �(�x < x < 2�x)] 1
8α4�t (A.38)

which is worse than the result of the previous iteration. The error is again O(h), but has now
‘infected’ two grid points. The error is smaller by a factor α2, but the error at the two grid
points has a different sign, indicating the start of an oscillation.

It should be noted that using higher order derivatives, for example, using a five-point
stencil for a fourth-order second derivative, does not remove this error. Similarly, using a
higher order prolongation operator does not help. (We assume that it would be possible to
adapt the prolongation scheme directly to the time integration scheme and arrive at a consistent
discretization in this way. We do not think that this is worthwhile in practice.)

The main problem seems to be caused by taking a second derivative, which has formally
an O(1) error. The usual arguments why the error should be smaller in practice [56] do not
hold near the discontinuity that is introduced at the refinement boundary.

The result of simulating case (a) is shown in figure 7 of the main text. For high resolutions,
convergence seems to be only of first order. Figure 8 shows case (b), which shows second-order
convergence for all resolutions.

A.4. The general case

In the general case the coarse grid evolution and the prolongation will not provide exact data
at the boundary on the fine grid. Instead we argue heuristically as follows. The initial data
U(0), V (0) will be correct to order h2,

Un = U(tn, x) + h2enf n(x) + O(h3) (A.39)

where en is a constant and f n a smooth function of x. These data will be evolved forward on
the coarse grid using ICN to time tn+1 where they will also be correct to order h2,

Un+1 = U(tn+1, x) + h2en+1f n+1(x) + O(h3). (A.40)

The fine grid data will then be evolved. The first ICN step is a Euler step to tn+1/2

(as the fine grid time step is one half the coarse grid time step). In the interior of the refined
grid the result will be first-order accurate in time and second-order in space,

Un+1/2 = U(tn+1/2, x) +
(
�te

n+1/2
t + (�t)2en+1/2

x

)
f n+1/2(x) + O(h3). (A.41)

The boundary data for the fine grid are then found by prolongation. Interpolation in space
and time, assumed to be second-order accurate, gives

Un+1/2(x < 0) = U(tn+1/2, x) + h2en+1/2
p f n+1/2(x) + O(h3). (A.42)

Therefore at the refinement boundary there is a discontinuous jump in the function,

[Un+1/2]x=0+
x=0− = (

he
n+1/2
t + (�t)2(en+1/2

x − en+1/2
p

))
f n+1/2(x). (A.43)

As shown in the case of simple polynomial data in appendix A.3, the next step in the ICN loop
will lead to a second-order local error when the second derivative of the function is taken at
the discontinuity. Thus the error at a fixed time will only be first-order convergent. It is clear
that this discontinuity will also lead to first-order errors with other multi-step time integration
methods such as the Runge–Kutta methods.

Evolutions in 3D numerical relativity using fixed mesh refinement 1487

We have performed a symbolic calculation of two complete coarse grid time steps with
generic initial data using Maple [57]. We find that the errors in u and v scale with �x2 and
�x, respectively, both after the first and the second coarse grid steps. This is consistent with
the calculation above as well as our numerical results. This means that, after a fixed time t,
the error in u is O(�x), so that we expect first-order convergence only.

References

[1] Berger M J and Oliger J 1984 J. Comput. Phys. 53 484
[2] Berger M and Colella P 1989 J. Comput. Phys. 53 64
[3] Plewa T 2003 Online bibliographic resource at http://www.camk.edu.pl/˜tomek/AMRA/amr.html
[4] Winkler K H A, Norman M L and Mihalas D 1984 J. Quant. Spectrosc. Radiat. Trans. 31 473
[5] Winkler K H A, Norman M L and Mihalas D 1984 J. Quant. Spectrosc. Radiat. Trans. 31 479
[6] Plewa T and Mueller E 2001 Comput. Phys. Commun. 138 101
[7] Khokhlov A M 1998 J. Comput. Phys. 143 519
[8] Choptuik M W 1989 Frontiers in Numerical Relativity ed C Evans, L Finn and D Hobill (Cambridge: Cambridge

University Press)
[9] Choptuik M W 1993 Phys. Rev. Lett. 70 9

[10] Choi D-I 1998 PhD Thesis University of Texas at Austin
[11] Hawley S H 2000 PhD Thesis University of Texas at Austin
[12] Lanfermann G 1999 Master’s Thesis MPI für Gravitationsphysik, Freie Universität Berlin
[13] Choi D-I, Brown J D, Imbiriba B, Centrella J and MacNeice P 2004 J. Comput. Phys. 193 398–425 (Preprint

physics/0307036)
[14] Papadopoulos P, Seidel E and Wild L 1998 Phys. Rev. D 58 084002 (Preprint gr-qc/9802069)
[15] New K C, Choi D-I, Centrella J M, MacNeice P, Huq M and Olson K 2000 Phys. Rev. D 62 084039
[16] Liebling S L 2002 Phys. Rev. D 66 041703 (Preprint gr-qc/0202093)
[17] Pretorius F 2002 PhD Thesis University of British Columbia
[18] Choptuik M W, Hirschmann E W, Liebling S L and Pretorius F 2003 Phys. Rev. D 68 044007 (Preprint

gr-qc/0305003)
[19] Diener P, Jansen N, Khokhlov A and Novikov I 2000 Class. Quantum Grav. 17 435 (Preprint gr-qc/9905079)
[20] Lowe L and Brown D 2003 Talk given at Am. Phys. Soc. Meeting (8 Apr. 2003)
[21] Hern S D 1999 PhD Thesis Cambridge University (Preprint gr-qc/0004036)
[22] Brügmann B 1996 Phys. Rev. D 54 7361
[23] Imbiriba B, Choi D-I, Brown J D, Baker J and Centrella J 2003 Talk given at Am. Phys. Soc. Meeting (7 Apr.

2003)
[24] Pretorius F and Lehner L 2003 Preprint gr-qc/0302003
[25] Brügmann B 1999 Int. J. Mod. Phys. D 8 85 (Preprint gr-qc/9708035)
[26] Kidder L E and Finn L S 2000 Phys. Rev. D 62 084026 (Preprint gr-qc/9911014)
[27] Kidder L E, Scheel M A, Teukolsky S A, Carlson E D and Cook G B 2000 Phys. Rev. D 62 084032 (Preprint

gr-qc/0005056)
[28] Pfeiffer H P, Kidder L E, Scheel M A and Teukolsky S A 2003 Comput. Phys. Commun. 152 253 (Preprint

gr-qc/0202096)
[29] Scheel M A, Kidder L E, Lindblom L, Pfeiffer H P and Teukolsky S A 2002 Phys. Rev. D 66 124005 (Preprint

gr-qc/0209115)
[30] Scheel M A, Erickcek A L, Burko L M, Kidder L E, Pfeiffer H P and Teukolsky S A 2003 Preprint gr-qc/0305027
[31] Allen G, Benger W, Dramlitsch T, Goodale T, Hege H-C, Lanfermann G, Merzky A, Radke T and Seidel E

2001 Euro-Par 2001: Parallel Processing, Proc. 7th Int. Euro-Par Conf. ed R Sakellariou, J Keane, J Gurd
and L Freeman (Berlin: Springer)

[32] Allen G, Benger W, Goodale T, Hege H-C, Lanfermann G, Merzky A, Radke T, Seidel E and Shalf J 2001
Cluster Comput. 4 179

[33] Talbot B, Zhou S and Higgins G 2000 http://sdcd.gsfc.nasa.gov/ESS/esmf tasc/Files/Cactus b.html
[34] The Cactus Team 2004 The Cactus Computational Toolkit http://www.cactuscode.org
[35] Goodale T, Allen G, Lanfermann G, Massó J, Radke T, Seidel E and Shalf J 2002 Vector and Parallel

Processing—VECPAR’2002, 5th Int. Conf. (Lecture Notes in Computer Science) (Berlin: Springer)
[36] Choptuik M W 1995 http://wwwrel.ph.utexas.edu/Members/matt/Doc/texas95.amr.ps
[37] Bell J, Berger M, Saltzman J and Welcome M 1994 SIAM J. Sci. Comput. 15 127
[38] Berger M J and Rigoutsos I 1991 IEEE Trans. Syst. Man Cybern. 21 1278

1488 E Schnetter et al

[39] Quirk J 1991 PhD Thesis Cranfield University
[40] Alcubierre M, Brügmann B, Diener P, Koppitz M, Pollney D, Seidel E and Takahashi R 2003 Phys. Rev. D 67

084023 (Preprint gr-qc/0206072)
[41] Shibata M and Nakamura T 1995 Phys. Rev. D 52 5428
[42] Baumgarte T W and Shapiro S L 1999 Phys. Rev. D 59 024007 (Preprint gr-qc/9810065)
[43] York J 1979 Sources of Gravitational Radiation ed L Smarr (Cambridge: Cambridge University Press)
[44] Bona C, Masso J, Seidel E and Stela J 1995 Phys. Rev. Lett. 75 600 (Preprint gr-qc/9412071)
[45] Alcubierre M and Brügmann B 2001 Phys. Rev. D 63 104006 (Preprint gr-qc/0008067)
[46] Alcubierre M, Brügmann B, Pollney D, Seidel E and Takahashi R 2001 Phys. Rev. D 64 061501 (Preprint

gr-qc/0104020)
[47] Kreiss H and Oliger J 1973 Methods for the Approximate Solution of Time Dependent Problems (Global

Atmospheric Research Programme (GARP): GARP Publication Series vol 10) (GARP Publication, JOC
WMO-ICSU)

[48] Brügmann B 2001 private communication
[49] Brandt S and Brügmann B 1997 Phys. Rev. Lett. 78 3606
[50] Szilágyi B, Gómez R, Bishop N T and Winicour J 2000 Phys. Rev. D 62 104006 (Preprint gr-qc/9912030)
[51] Szilágyi B, Schmidt B and Winicour J 2002 Phys. Rev. D 65 064015 (Preprint gr-qc/0106026)
[52] Alcubierre M et al 2004 Class. Quantum Grav. 21 589–613 (Preprint gr-qc/0305023)
[53] Kidder L, Scheel M, Teukolsky S and Cook G 2000 Miniprogram on Colliding Black Holes: Mathematical

Issues in Numerical Relativity http://doug-pc.itp.ucsb.edu/online/numrel00/scheel
[54] Calabrese G, Lehner L, Neilsen D, Pullin J, Reula O, Sarbach O and Tiglio M 2003 Preprint gr-qc/0302072
[55] MacNeice P, Olson K M, Mobarry C, deFainchtein R and Packer C 2000 Comput. Phys. Commun. 126 330
[56] Choptuik M W 1991 Phys. Rev. D 44 3124
[57] Maplesoft 2004 http://www.maplesoft.com

