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ABSTRACT

On the basis of data from an energy-conserving 3D general relativistic MHD
simulation, we predict the statistical character of variability in the coronal lu-
minosity from accreting black holes. When the inner boundary of the corona is
defined to be the electron scattering photosphere, its location depends only on
the mass accretion rate in Eddington units m. Nearly independent of viewing an-
gle and m, the power spectrum over the range of frequencies from approximately
the orbital frequency at the ISCO to ~ 100 times lower is well approximated by
a power-law with index -2, crudely consistent with the observed power spectra
of hard X-ray fluctuations in AGN and the hard states of Galactic binary black
holes. The underlying physical driver for variability in the light curve is variations
in the accretion rate caused by the chaotic character of MHD turbulence, but the
power spectrum of the coronal light output is significantly steeper. Part of this
contrast is due to the fact that the mass accretion rate can be significantly mod-
ulated by radial epicyclic motions that do not result in dissipation, and therefore
do not drive luminosity fluctuations. The other part of this contrast is due to
the inward decrease of the characteristic inflow time, which leads to decreasing
radial coherence length with increasing fluctuation frequency.

Subject headings: accretion, accretion disks — galaxies: nuclei — X-rays: binaries
— black hole physics — MHD — radiative transfer

1. Introduction

In a rough manner of speaking, the light from all accreting black holes, whether those of
stellar mass (Galactic Black Holes, or GBHs) or those residing in galactic nuclei with masses
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105 107 times larger (Active Galactic Nuclei, or AGN), can be divided into a thermal and a
coronal portion. The former corresponds to the part of the continuum spectrum with a clear
characteristic energy (typically ~ 1 keV in GBHs, ~ 10 eV in AGN) and is thought to be
the result of nearly-LTE emission from the surface of the accretion disk feeding the central
black hole. The latter corresponds to the part of the continuum that extends approximately
as a power-law from energies of order the thermal peak all the way up to ~ 100 keV and is
thought to arise from inverse Compton scattering of seed photons provided by the thermal
component. Both components vary. Compared at the same (temporal) frequency, the coronal
part generally varies with greater amplitude (Remillard & McClintock 2006) at frequencies
within a few orders of magnitude of inner disk dynamical frequencies Edelson et al. (2000);
Breedt et al. (2009). It is the object of this paper to link, for the first time, the character of
this coronal variability to heating processes directly driven by accretion dynamics.

Coronal variability from black holes has been the subject of empirical study for several
decades. The simplest way to characterize this phenomenon is in terms of its Fourier power
density spectrum (PDS), P(v). Over several orders of magnitude in frequency, most of the
observed fluctuation power is contained in a continuum that varies smoothly with frequency.
It is convenient to describe this continuum in terms of its logarithmic derivative with fre-
quency «. With the sign convention that P(v) oc v*, these slopes are commonly in the range
—2<a<(.

GBHs move among a repertory of spectral states in which the balance between thermal
and coronal luminosity changes. The detailed shape of P(v) for the coronal luminosity ap-
pears to be correlated with the specific spectral state of a GBH (as summarized in Remillard
& McClintock (2006)). In the “low/hard” state, « tends to decrease slowly with increasing
frequency: for example, in GROJ1655-40, o ~ 0 for v < 1 Hz, and then gradually falls to
less than —1 at higher frequencies, while for Cyg X-1, it decreases from ~ —1.7 to ~ —2.4
over approximately the same frequency range (Revnivtsev et al. 2000). By contrast, in the
“steep power-law” state of this system, o« ~ —1 over almost the entire observed frequency
range, from 0.01 to 100 Hz. In the “thermal” state, in which the coronal luminosity is so
weak that it dominates the spectrum only at comparatively high energies, a ~ —1 at low
frequencies like the steep power-law state, but steepens to ~ —2 at high frequencies, some-
what resembling the low/hard state Cyg X-1, but with much smaller amplitude variations.
Despite the coronal component’s comparative weakness in the thermal state, its variations
dominate those of the thermal component, at least for photons of more than a few keV
(Churazov et al. 2001). GBHs can also exhibit quasi-periodic oscillations (QPOs): in the
low/hard state at ~ 1 Hz, and sometimes in the transition to the steep power-law state at
frequencies of several hundred Hz.
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In AGN, whose spectral state does not appear to change in the same manner, the power
spectra may be more simply described: typically —2 < a < —1 below some characteristic
frequency, but falling to < —2 at higher frequencies (Markowitz et al. 2003, 2007; Arévalo
et al. 2008). QPOs, which, particularly in their lower frequency variety, are easy to see in
the low/hard state power spectra of GBHs, are either entirely absent or at least difficult to
detect (Vaughan & Uttley 2005); there is at present only one reasonable candidate in an AGN
(Gierlinski et al. 2008). The variability of AGN and GBHs can be linked (approximately)
through a simple scaling: the frequency of the roll-over in the power spectrum appears to
be inversely proportional to the mass, as the most naive theory might predict, albeit with a
correction for the accretion rate (McHardy et al. 2006).

In order to understand the nearly featureless character of X-ray power spectra, many
disparate theories have been proposed. The physical content of these theories has gradually
increased over the years. The very first ideas were purely formal: the aperiodic nature of
the light curves of Cyg X-1 implied to some that they were due to uncorrelated shot noise
(Terrell (1972)). Phenomenological models followed, as others supposed that power spectra
that were power-laws in frequency resulted from a confluence of power-laws—in radius—that
might relate the local emissivity or propensity to hot spots to the orbital frequency (Krolik
et al. 1991; Abramowicz et al. 1991; Pechacek et al. 2008). These models are consistent with
the observation that many AGN are phase incoherent (Krolik et al. 1993) and do not exhibit
limit cycle behavior (Czerny & Lehto 1997). The fact that there can be substantial power
at frequencies far below the orbital frequency of the inner disk coupled with the assumption
that X-rays are predominantly emitted at small radii suggested to some that dynamics at
large radii, where the dynamical timescales are longer, control the low frequency behavior
by modulating the mass accretion rate. For example, Lyubarskii (1997) sought to explain
the shape of the power spectrum in terms of fluctuations at large radius in the disk’s ratio
of stress to pressure, the Shakura-Sunyaev a parameter. Elaborating this idea, Churazov
et al. (2001) suggested that such fluctuations might explain the connection between PDS
form and spectral state in GBHs. Alternatively, Axelsson et al. (2006) proposed that the
changes in power spectrum might be caused by disk precession.

None of this early work had any direct connection to physical mechanisms. Most im-
portantly, in the past fifteen years we have come to realize that accretion is driven by MHD
turbulence, and the turbulence is stirred by the magneto-rotational instability (Balbus &
Hawley 1998). To move from phenomenology to physics, models must make contact with
the underlying physics of accretion. For example, studies of the long-term behavior of MHD
turbulence might determine whether the fluctuations in a suggested by Lyubarskii (1997)
and Churazov et al. (2001) actually occur. It would also be highly desirable to link more
directly fluctuations in the accretion rate with fluctuations in light output. Although in the
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long-run the energy available for radiation is governed by the accretion rate, time-dependent
disks may have an accretion rate that is not exactly the same at all radii, the heating rate
may not exactly follow even the local accretion rate, time is required to generate photons
once gas is heated, and the photons, once emitted, can take a finite time to make their way
out of the disk. Indeed, Reig et al. (2006) argue on the basis of the distinct variability prop-
erties of the coronal and thermal components in the soft state, and the correlation between
luminosity and coronal power-law slope, that fluctuations in the accretion rate cannot on
their own explain the observed variability in GBHs.

More recent work has begun to follow this path, but typically has used proxies for the
radiation rate rather than a measure of the time-varying luminosity itself. Hawley & Krolik
(2001) took the first step. They computed the power spectra of both the mass accretion
rate in the plunging region and the volume-integrated magnetic stress, with the thought
that one or the other would be a reasonable predictor of the time-dependence of the light
output. The two power spectra were similar, but not identical, both crudely describable
as power-laws with @ ~ —1.5. Armitage & Reynolds (2003) elaborated this approach.
Assuming that the local emissivity follows directly from the [ocal mass accretion rate (and not
separating the coronal part from the thermal part), they used the vertically-integrated and
azimuthally-averaged magnetic shear stress from 3D pseudo-Newtonian MHD simulations as
a proxy for the local accretion rate. Placing the resulting emissivity in the disk’s equatorial
plane and assuming further that the fluid followed circular orbits, they calculated the light
curves seen by distant observers, allowing for general relativistic ray-paths and Doppler-
shifting. Even though the PDSs of individual radial annuli were well described by broken
power-laws (a; = —1 and ay = —3.5) whose breaks were near the local orbital frequency,
the superposition of these PDSs because of the radial dependence of the emissivity led
to o = —2 power-law PDSs in the total output. Machida & Matsumoto (2004) came to
similar conclusions based on a Fourier analysis of the mass accretion rate in the plunging
region. Moving slightly closer to incorporating radiation mechanism physics, Schnittman
et al. (2006) used data from 3D MHD simulations in full general relativity to predict model
light curves and power spectra from the thermal component alone. Most recently, Reynolds
& Miller (2009) studied the fluctuations in a variety of dynamical quantities monitored in a
3-d pseudo-Newtonian MHD simulation, hoping to find an origin for QPO behavior.

In this paper, we seek to connect dynamical calculations still more tightly to radiation.
The tool we bring to bear on this problem is a new fully general relativistic 3D MHD
simulation code (described in Noble et al. (2009)). Because this code intrinsically conserves
energy, it can self-consistently relate dynamics to heating. However, because inclusion of
simultaneous radiation transfer is not yet feasible, we cannot provide a complete account
of the radiation output. In particular, photon diffusion times within the disk body are so
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long (shearing box calculations that do include radiation transfer have shown that they are
generally ~ 10 orbital periods: Hirose et al. (2006)) that diffusion delays can substantially
affect the time-dependence of the emerging light. Consequently, in this paper we focus on
the variability of the luminosity from the coronal region, where optical depths are likely no
more than order unity (see, e.g., Ibragimov et al. (2005)).

The specific example we treat is one in which the black hole rotates with spin parameter
a/M = 0.9. Radiation is created with an emissivity in the fluid frame which depends
on the local temperature in a way designed to give the disk a desired aspect ratio. Any
dissipated heat is radiated on an orbital timescale; in this fashion, we attempt to make the
time-dependence of the light output follow closely the time-dependence of heat-generation
by such mechanisms as shocks or magnetic reconnection. The time and energy at which
photons arrive at infinity are computed on the basis of fully general relativistic ray-tracing
including an allowance for all travel time effects.

The remainder of this paper is organized as follows: In Section 2 we remind the reader
of the salient characteristics of our simulation and detail the new features of our ray-tracing
method. In that section we also define our time-series analysis methodology. Section 3
presents our results, which we discuss in Section 4.

2. Methodology

For more than a decade, MHD turbulence driven by the magnetorotational instability
has been recognized as the prime driver of accretion (Balbus & Hawley 1998). Numerical
simulations are the most powerful tool we have for studying turbulence, and in recent years
methods have been developed that permit simulations of accretion disks over significant
radial ranges in full 3D using general relativistic dynamics (De Villiers & Hawley 2003;
Shafee et al. 2008; Noble et al. 2009). From these and analogous 2D simulations (Gammie
et al. 2004; Fragile & Meier 2009), a consistent picture has emerged, despite a wide range of
numerical algorithms and gridding schemes: Most of the accreted material flows through a
dense disk that orbits the black hole at very nearly the angular frequency of circular orbits
in the equatorial plane. Within this dense disk, relatively small velocity fluctuations are
superposed on the bulk’s orbital motion. Higher in latitude, the disk becomes less dense,
more magnetized, and more organized in both magnetic field and velocity.

The simulation code we used to create the data discussed here was described in Noble
et al. (2009). It is an intrinsically conservative ideal GRMHD code called HARM3D that
accurately captures any gridscale numerical dissipation as heat. Numerical dissipation in
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many ways emulates natural dissipation; when shocks collide and magnetic fields reconnect,
entropy is created and the gas is heated. Left unchecked, the continual dissipation would
make much of the disk unbound and lead to a progressively growing disk thickness. Both
to permit creation of a (statistical) steady-state and to track the rate at which energy
is dissipated, we inserted into the stress-energy conservation equation an artificial cooling
function; i.e., this equation was given the form V,T# = —Lu,, where V denotes a covariant
derivative, T is the complete stress-energy tensor, £ is the radiative emissivity in the fluid
frame, and u, is the fluid four-velocity. The cooling function £ = Qgef(T/T.), where Qg
is the local Keplerian frequency, € is the proper thermal energy density, and f(7T/T.) is a
continuous function that is zero for T'/T, < 1 and increases at higher temperatures. The
local target temperature 7} is a function of radius chosen to regulate the disk to a nearly
constant aspect ratio H/r; in the simulation discussed here, H(r)/r ~ 0.05 — 0.12. Only
gravitationally bound material is cooled, and (as suggested by the form of our stress-energy
equation), the radiation is assumed to be isotropic in the fluid frame. This simple radiation
model was used because we are primarily interested in the bolometric emission from the disk
and wish to apply it to a wide variety of black hole systems. A more model-dependent cooling
function could also be used (Fragile & Meier 2009), but it would be computationally more
expensive and would also require choosing both a specific black hole mass and an accretion
rate.

Our numerical domain was divided into 192 x 192 x 64 cells in the radial, poloidal, and
azimuthal directions respectively, with r € [1.28,120|M, 6 € [0.057,0.957], ¢ € [0, 7/2]".
The radial discretization is logarithmic—Ar oc 7—to resolve finer features at smaller radius.
The azimuthal resolution is constant, and the poloidal discretization is rarefied at the poles
and concentrated at the equator.

The pressure maximum of the initial distribution—at » = 25M—sets the location within
which a well defined accretion flow exists. The disk reaches an inflow steady-state for r <
14M over the period t = [T000M, 15000M]; we examine only this epoch here. For reference,
the orbital period at radius r is Ty (r) = 3.1 x 1074 (M /10M,,) [(T/M)3/2 + a/M} s. The
span At = 8000M represents approximately 287 orbital periods at the innermost stable
circular orbit (ISCO) and 10 orbital periods at the initial pressure maximum. For our black
hole spin parameter, risco = 2.32M and the horizon is located at ry,, = 1.44M. The disk’s
rest-mass density p, 4-velocity u* and cooling function £ evaluated at all grid points are
written to disk every 20M in time. We use this data as input to our radiation transfer

!Note that throughout this paper we use geometrized units with G = ¢ = 1 unless mentioned otherwise;
distances and times are therefore scaled to the mass of the black hole M.
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procedure to create light curves. Any emission outside » = 25M is ignored.

Because the focus of this paper is time-variability properties, we point out that our
method has two limitations that affect the shortest timescales. Sampling at intervals of 20M
means that no frequencies higher than 1/(40M) can be probed; our Nyquist frequency is 0.7
times the orbital frequency at the ISCO. The other limitation comes from our cooling rate.
Because the characteristic cooling rate is ~ Q, heating fluctuations on timescales shorter
than ~ Q}l cannot be translated into equally rapid emission fluctuations, even though
some cooling mechanisms, notably inverse Compton scattering, can often have cooling rates
considerably faster than ~ €x. In sum, we cannot present results on frequencies above
~ 0.7v;s5c0, and the form of our cooling function potentially suppresses some fluctuation
power at the higher frequency end of the range we do discuss.

2.1. Radiation Transfer

Within the simulation, we do not consider any interaction between the emitted radiation
and the material. However, more realistically, there is always some opacity, and in most
circumstances the dominant opacity in the material near a black hole is electron scattering.
This opacity leads to a natural division of the radiation in two parts: that emitted inside or
outside the photosphere. Within the photosphere, scattering can add substantially to the
time a photon can take to reach the outside, washing out fluctuations in intrinsic emissivity;
outside the photosphere, of course, scattering has very little effect on photon escape time. In
addition, photons deriving their energy from dissipation inside and outside the photosphere
can be distinguished spectrally: Inside the photosphere, thermalization is strong, and the
local spectrum should be approximately black body, at a temperature ~ 10 eV in AGN,
~ 1 keV in GBHs. By contrast, outside the photosphere, much lower gas densities and much
higher ratios of heating density to mass density lead to much higher temperatures, and the
primary emission mechanism is inverse Compton scattering, so that the radiated spectrum
is characteristically a power-law extending well into the hard X-ray regime. In order to
make a realistic estimate of the light curve directly from the simulation’s emissivity data,
we therefore restrict our efforts to the coronal hard X-ray emission, whose source is near or
outside the scattering photosphere.

To locate that photosphere requires a calculation of the opacity, yet its magnitude is
not defined in code-units because the simulation requires no absolute density scale. Instead,
we determine it after the fact by the following procedure: We distinguish quantities in code-
units from quantities in physical units by attaching a subscript ¢ to the former, and leaving
the latter unlabeled. If a fraction n of the rest-mass of accretion were transformed into



luminosity at infinity, it would be
L= [ dbdoy=gpa (p/p)(GMIEVE = wdl(pfp)(GM /e 1)

because the unit of length is GM/c? if G = ¢ = 1, and u*, when measured in units of ¢,
is dimensionless. Here, ¢ is the determinant of the metric. Normalizing the luminosity to
the Eddington luminosity Lg, we find that the relation between physical density and code
density is

4rc? L
krGM MC nLg’

p/pe = (2)

where rp is the electron scattering opacity per unit mass, and M, = 0.0177 is the time-
averaged rest-mass accretion rate in code units. By fortunate coincidence, optical depths
depend only on L/(nLg), which we abbreviate as m, because the unit of length is oc M.

Because our accretion flow is far from spherically symmetric, the location of the photo-
sphere is a function of the observer’s position. We imagine, then, that numerous “cameras”
are placed on a grid in polar angle ¥ and azimuthal angle ¢ on a very large sphere (radius
10°M) centered on the black hole. From each camera, we define a bundle of geodesics that
run through the problem volume. These are parameterized by an affine parameter A normal-
ized so that an observer in the local fluid frame would measure the differential length along

a ray as
ds = vdA, (3)

where v is the frequency of the photon as measured by that observer. If N# = dx*/d\ is the
4-vector tangent to the null ray then

v = l/cam (4)
z

where z is the redshift factor between the local fluid frame observer and the camera frame:

o= Ny (5)
(Ul Ny g
In the numerator of this ratio, the 4-velocity is that of the camera; in the denominator, it is
that of the fluid at some point along the ray. We then integrate the optical depth

dr = prrvdA (6)

along these geodesics in order to determine the location of the photospheric surface for that
camera. The photosphere surface is defined to lie at a constant 7 = 7,, which we set to unity,

ie., 7, =1.
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Once the location of the photosphere is determined, we integrate the emissivity along
these geodesics from the photosphere out to the camera; we assume no scattering takes place

d (1, Jv
ﬁ(—):— | 7)

where [, is the specific intensity and j, is the fluid-frame emissivity, given by:

along these rays:

L
Jo=-—0(2V — Veam) - (8)
47

Integrating over all v, to find the bolometric luminosity is equivalent to setting ve,m, = 1
and v = 1/z; the latter procedure is done in practice. To set the units of the observed
luminosity, we note that the units of power density are the units of energy density (pc?)
divided by the unit of time (GM/c?*). The end result is

4re’mh

L=—"— — . (9)
kr (GM)? M,

However, these units are also unnecessary because all our results for variability will be shown
in fractional terms, relative to the mean luminosity.

We are therefore left with three parameters to explore: m, 9 and ¢. We vary m from a
value low enough that the entire flow is optically thin up to the Eddington limit:

i € {0.001,0.003,0.01,0.03,0.1,0.3,1.} . (10)

The simulation should not be biased toward any particular pole, so we sample © only over
one hemisphere, uniformly in sin ¥:

9 € {5°,17°,29°,41°,53°,65°, 77°,89°} . (11)

Similarly, the physics of our accretion disk has no special azimuthal orientation, so any
observed dependence of the light curves on ¢ must be only statistical fluctuations. However,
our simulation domain spans only the first quadrant in azimuth, from 0 to 7 /2.

To cope with this limitation, we remap the density and velocity data into the other
quadrants, but not the emissivity. By doing so, we can compute the portion of the light
reaching infinity from this quadrant alone with a proper allowance for optical depth effects
in all directions. In principle, there are four different ways we might have placed the radi-
ating quadrant with respect to the quadrants having only opacity. From the expectation of
azimuthal symmetry, it then follows that a full description of the statistical character of the
light curve can be obtained from viewing this quadrant from only four azimuthal directions,

s 3T
p€eq0,— T — i (12)

which we choose as

2 2
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This piecewise construction of the composite image is illustrated in Figures 1 - 2. Images
from different ¢ are shown in Figure 1, and their sum is plotted in Figure 2. We find that
frame-dragging of photons can cause emission from one quadrant of the simulation domain
to spread into all quadrants of the image plane. The total flux of a quadrant varies with
@ since certain values orient the disk’s orbital velocity closer to the line of sight. Figures 1
and 2 will be helpful references in our later discussion about how the artificial azimuthal
symmetry condition influences our variability predictions in Section 3.4.

Tracking the light through the simulation data is complicated by the fact that space-
time’s curvature means that a set of photons reaching an observer at one instant may orig-
inate from the accretion flow over a wide range of coordinate times. Armitage & Reynolds
(2003) included the effect of time delays, but used an infinitesimally thin emission region
which intersected each geodesic only once. This meant that they did not have to propa-
gate the light rays through the simulation data, as we must because our emission region is
extended.

There are many ways to go about the bookkeeping inherent to this problem, but dif-
ferent algorithms place vastly different demands on computer memory. Ray-tracing as the
simulation runs is expensive, memory intensive, and not amenable to exploration since ad-
justments made to the ray-tracing scheme would require rerunning the simulation®. For this
reason, we adopted a post-processing procedure, which means that our time resolution is
set by the rate at which we output simulation data. As a ray traverses spacetime, we use
quad-linear (linear in space and time) interpolation to determine the necessary quantities
along the ray’s path. This interpolation is done with pairs of simulation data slices at a
time in order to reduce the calculation’s memory footprint. Rays are organized into stacks
of snapshots, each representing a batch of rays distributed over the image plane that reach
the observer synchronously. Each snapshot then depends on a finite span of simulation data,
or rather, a given time slice of simulation data influences a sequence of snapshots.

In Noble et al. (2009), we spent much effort to ensure our ray tracing calculation was
converged with respect to the number of light rays used per image; following the analogy with
a pinhole camera, we will refer to them as pizels in our camera. We found best performance
using a nonuniform pixelation that approximates a projection of the simulation’s grid onto
the image plane. Using the radial profile of flux at infinity dF'/dr as our convergence criterion,
we found that N, = 255 nonuniform pixels and Ny, = 1200% uniform pixels result in
approximately the same level of accuracy (largest relative error over r is 5%) when compared
to a calculation with Ny = 15002 uniform pixels.

2See De Villiers (2008) for an algorithm that performs the ray-tracing in situ.



- 11 -

2.2. Time Series Analysis

The radiative transfer calculation yields a function F' (9, ¢, t,m) which represents the
bolometric flux for an observer at constant radius (r = 10°GM/c?) and time ¢t. In the
following analysis unless explicitly stated, we integrate F' over ¢ to yield a light curve for a
full 27 disk. Our goal is then to understand the temporal character (e.g., power spectrum,
variance) of this function with respect to the remaining parameters (i.e. ¥, ).

Given a function defined on a set of N discrete times F'(t,) (where n =0,...,N — 1),
we define its discrete Fourier transform F'(v) at frequency v as

N—-1

F(v) = 3 Flte 7o (13)

n=0

where v € {1/T,...,N/2T}, and T = tx_1 — tg. As remarked earlier, our Nyquist limit is
Vinax = (40M) ™1 ~ 0.7v15c0, where vigco is the orbital frequency at the ISCO.

We define the normalized PDS of the light curve F'(¢) such that it is a measure of the
fractional variance per unit frequency:

‘l\:)
| N

P(v) = = |F (v)

" (1)

1

where F is the time average of F/(t) 3. Since a (v) is a complex number, we can represent it
in terms of its magnitude and phase: F (v) = A (v) e,

Observed light curve power spectra are often described in terms of a best-fitting power-
law; as we will see, our results resemble power-laws at about the same level of accuracy.
Determining the best-fit slope to the power spectra of our light curves, however, is somewhat
arbitrary because we do not know the “error distribution” of our data (the relevant ensemble
for us would be a large set of simulations begun with slightly different initial conditions).
Because our goal is only qualitative description, we choose a very simple approach: equal
standard error at each frequency point. That is, to find the best-fit power-law slope for a

3These power spectra accurately describe our finite duration simulation. However, as pointed out by
Deeter & Boynton (1982) and Deeter (1984), power spectra with slopes steeper than —2 may be subject to
artificial leakage of fluctuation power from low frequencies to high. This problem can be significant when the
power spectrum is substantially steeper than —2 and extends to frequencies significantly lower than those
probed by the experiment (i.e., much lower than the inverse of its duration). Because the slope we measure
is only slightly more negative than —2 over most of the parameter space of interest, we believe that this
artifact may have only limited effect, but only much longer simulations can definitively answer this question.
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given power spectrum, we minimize the quantity

@12

Xer = D [P(w) — Cvf] (15)
with respect to C' and a. This form tends to weight most heavily the highest decade of
frequencies because the frequency points are separated by a constant Av = (8000M) 1.

A key physical question we wish to explore is: how well correlated is the variability
at different radii? Answering this question will help us understand the light curve’s power
spectrum and provide a context for comparison to other models (e.g.,Lyubarskii (1997)).
Correlations are performed by first decomposing the light curve’s PDS into partitions. Let
there be N partitions, each with a different light curve F, (¢) so that our total light curve
is their simple sum: F (t) = . F, (t). The total power spectrum P(v) can therefore be
expressed as a sum of the partitions” PDSs (S,) plus a sum that depends on how well the
different modes are correlated (Sj):

*

Py = Zlrw) =2 (Z i, <u>> (Z i, <v>) (16)
— 3?_7; ; A2 42 ; DZmAnAm €08 (At ) (17)
— n }T_”zpn + % ; ;AnAm cos (Atum) (18)
= S, + 5. (19)

Here Ay, = v, — 1, is the difference in phase at frequency v between two partitions.
Note that even though P(v) is independent of our partition scheme, the relative sizes of
S, and S, are not. If the A, are all of similar magnitude, then S,/S, — 0 as N — oo
(Sp ~ N (N —1) while S, ~ N) and S,/S, — 0 as N — 1 (there is only one partition and
one signal is perfectly coherent with itself). If the partitions are perfectly incoherent, then
P ~ S,. Conversely, if they are perfectly coherent, then P ~ S, for N > 2.

3. Results

3.1. Light Curves and Power Spectra: Dependence on Accretion Rate and
Inclination

Sample light curves and their corresponding power spectra can be seen in Figures 3 and
4, the former displaying how they change with viewing angle 9 at fixed m, the latter how
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they change with accretion rate m at fixed ¥). Changing inclination does relatively little to
alter long time-scale fluctuations, but can lead to differences on short time-scales. On the
other hand, changing the opacity can lead to substantial differences in the light curve even
while the viewing angle remains the same. Remarkably, however, the gross shape of the
power spectrum is almost invariant to both sorts of changes: the best-fit power-law index is
~ —2 for all but the highest accretion rates and inclinations (Fig. 5).

The strongest effects influencing the inclination dependence of variations are relativistic
beaming and boosting, which become more important as the orbital velocity becomes larger
and more nearly parallel to the outgoing geodesics. They therefore have the greatest effect
on radiation issuing from the smallest radii when viewed at high inclination. Because those
same inner radii have the highest dynamical frequency, one might then expect a boost in the
high-frequency portion of the power spectrum at large 1J. In relative terms, this does not
occur as we have seen, the slope of the power spectrum depends only weakly on inclination,
except when 1 is quite large (see further discussion later in this subsection). Nonetheless,
although the relative variance changes little with inclination, the absolute variance, as well
as the absolute luminosity, does increase when the disk becomes more edge-on, as has also
been seen in previous calculations (Armitage & Reynolds 2003; Schnittman et al. 2006).

Because we explore only relative variability, the absolute luminosity’s proportionality
to m is irrelevant to our discussion. The accretion rate influences the light curves in our
calculations only by setting the opacity scale. The accretion rate is therefore degenerate with
our choice of 7,, and we can speak equivalently in terms of accretion rate or optical depth.

When the opacity is dominated by electron scattering, the disk is completely transparent
for accretion rates v = 0.001 or lower. Increasing rin moves the photosphere farther from
the disk’s midplane, and emission from high latitudes becomes more dominant because our
disk follows a nearly constant H/r profile. At the same time, increasing m leads to a relative
suppression of light from outer radii because the disk surface density, and hence its optical
depth, increases rapidly outward. For this reason, the largest accretion rates select out
fluctuations from the innermost and uppermost regions of the (bound) accretion flow.

This pruning of the coronal volume with increasing m is the most likely explanation for
the fact that the relative variance of the light curves monotonically increases with accretion
rate, from 0.04 at m = 0.001 to 0.09 at 7 = 1. As the region above the photosphere shrinks
in radial and vertical extent with rn, it contains fewer independently-fluctuating volumes, so
that their summed emission has larger fractional fluctuations.

Increasing m also leads to greater obscuration of high inclination observers’ views of
the inner disk. It is this effect that explains the steepening of the best-fit power-law in the
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high m and ¥ corner of Figure 5. Since we restrict the emission to r < 25M while the disk
matter extends out to r = 1200, sufficiently large accretion rate and inclination angle can
lead to complete obscuration of the emission region. The radius within which all emission is
obscured, R,, is consequently an increasing function of inclination and accretion rate. Curves
showing how R, depends on 7 and ¢ are also shown in Figure 5. Only when ¢ > 60° is this
obscuration effect significant. Because the location of the obscured region is sensitive to the
geometry of the disk—which is artificially tuned to have a near constant aspect ratio—the
steepening of the fluctuation power spectrum due to obscuration may be artificial.

3.2. The Optically Thin Limit: Origin of the Variability

The most obvious explanation for variability in radiative output is variability in the ac-
cretion rate. Let us first examine the relationship between the local emissivity and accretion
rate to see if this is indeed true for our simulation. In Figure 6 we compare the accretion rate
and emissivity at r = 3.5M to the light curve (integrated over the entire simulation) mea-
sured face-on (¢ = 5°). We choose to compare behavior at r = 3.5M to the total light curve
because it is the radius of the brightest annulus, and should therefore be a major contribu-
tor to the composite light curve. A nearly-polar viewing angle minimizes relativistic effects,
simplifying the comparison of the observed light curve to local emissivity. As expected, the
disk-integrated light curve follows the same large amplitude, long timescale fluctuations seen
in the accretion rate and emissivity at » = 3.5M. However, it lacks the short timescale
variability of the local emissivity and accretion rate. The same effect appears, of course, in
the power spectra. At this radius (and at most of the others in the steady-state portion of
the disk), the accretion rate and emissivity power spectra are approximate power-laws with
exponents ~ —1 and ~ —1.5, respectively, significantly shallower than the total light curve
power spectrum, for which the overall slope is ~ —2.

In order to elucidate why fluctuations in the local properties have more high frequency
power than the total light curve, and to understand better to what degree the accretion
rate drives the radiation, we examine the relationships between the power spectra of M(r, t),
L(r,t), the flux from r as it is observed on the polar axis at infinity (dF/dr), and the total

flux F(t) in the polar direction. We have already seen that |M|? and |£[* are similar but
not identical. A closer comparison of these two power spectra may be seen in Figure 7,
which shows the ratio of the emissivity’s power spectrum to that of the accretion rate as a
function of radius and frequency. In much of the diagram, the ratio is near unity, but there
is a depression in the ratio along a track whose frequency falls with increasing radius. This
dip seems to be due to an excess in fluctuation power in the accretion rate; in the case of
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r = 3.5M, a bump in |M\2 can be clearly seen at v ~ (0.2 0.4)v5co (Fig. 6).

The origin of this excess can be identified by comparing its track in radius-frequency
space with the radial dependence of several significant dynamical frequencies: the orbital
frequency, the vertical epicyclic frequency, and the radial epicyclic frequency. As can be
clearly seen in Figure 7, the radial epicyclic frequency but not the others follows closely
the centerline of the dip, suggesting that radial epicyclic modes modulate the accretion rate
without giving rise to emission—i.e. the oscillations are either not dissipated significantly,
not dissipated locally, or both. A similar feature in the power spectrum of radial velocity
as a function of radius was noted by Reynolds & Miller (2009) in their data from a pseudo-
Newtonian global disk simulation. The accretion rate also has more fluctuation power than
the emissivity for r > rgco and v ~ 0.3v15c0. We do not understand the origin of this excess.
The net result of both excesses, however, is to make |M|? a flatter function of frequency than
|£A|2 at most radii and also to create deviations from power-law behavior in the local accretion
rate power spectra.

We next study how closely fluctuations in £(r) are mirrored in dF/dr. To do so, we
look at the ratio

R=(f fﬁf;?dt) A (20
| ==t L(r,v)

This is the ratio of the two normalized power spectra as a function of radius and frequency
(Fig. 8). We find that R is evenly distributed about unity, with deviations that rarely exceed
a factor of 2 in either direction. Thus, the emissivity at r predicts dF(r)/dr at ¥ = 0 quite
well.

We focus next on how the individual annular contributions to the flux dF/dr sum to the
total flux F'(¢). One clue is given by the fact that the fractional variances of £L(r = 3.5M) and
M(r = 3.5M) are rather similar, 0.152 and 0.175, respectively, while the fractional variance
of F'is rather smaller, 0.029. We now understand that the emissivity follows the variability
of the accretion rate (but with certain exceptions like those associated with radial epicyclic
motions) and dF'/dr varies like the emissivity. Why, though, does the total flux have such
a small relative variance, and how can a set of oscillators (disk annuli) with power spectra
that are a ~ —1.5 power-laws integrate to have a composite PDS with o@ >~ —27

In the language of Section 2.2, the annuli can be thought of as partitions with their own
individual light curves. Since there are a large number of annuli or partitions, S, > S, unless
there is a dramatically low degree of phase-coherence between the different radial segments.
If all the annuli were perfectly coherent, A, = 0Vn, m, P ~ S, and the light curve would
have a a ~ —1.5 power-law power spectrum with a larger variance. On the other hand, if
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all the annuli were completely incoherent, the total flux power spectrum would still be a
power-law with a ~ —1.5, but with a smaller variance. The only way to steepen the slope
of the spectrum is for the degree of coherence to decline with increasing frequency.

The level of coherence in the variability of dF/dr is illustrated in Figure 9, where
we plot 1(v,r) over the lower half of our frequency range. At almost all radii, ¢(v,r) is
incoherent in frequency (negligible correlation lengths in v), but at fixed frequency, there
can be significant coherence in radius. The phases are sufficiently coherent between different
annuli that S, > S,, but their correlations follow no simple pattern. Different frequencies
show different radial coherence patterns, making it impossible to state that radius r varies
coherently with radius r’; rather, one can only say that certain modes at r are coherent with
those at r'.

The white dashed curve in Figure 9 shows the inflow rate v;,q0 as a function of radius,
which we have defined to be the mass-weighted mean radial velocity of bound material
divided by the local radial coordinate:

fbound dg d¢ dt v _gpur
fbound df d¢ dt VvV —39p

A fluid element is considered bound if hu; > —1, and h is the fluid element’s specific enthalpy.
The time integral is performed over our standard epoch of ¢ = [T000M, 15000M]. For TM <
r < 20M, we find that viggow(r) =~ [28T4(r)] L. At smaller radii, the inflow accelerates
until near the ISCO and in the plunging region vingew(r) ~ Qx. Regions to the left of

(21)

Vinflow? =

this curve are clearly more coherent than those to the right. That this should be so is not
too surprising, given the ultimate dependence of energy release on mass inflow. Indeed,
Lyubarskii (1997) proposed that the inner disk’s low frequency variability can be entirely
explained by variations spawned at larger radii (by fluctuations in the stress to pressure ratio)
that are then advected inward with the accretion flow. What is demonstrated in this phase
picture is that fluctuations lower than the local inflow rate do indeed propagate coherently
inward, whatever their initial source. However, over much of the range of frequencies studied
here, this criterion can be satisfied only near the ISCO and in the plunging region itself. At
these higher frequencies (which, as we shall see in the next section, are often the object of
most observational study), no such regular propagation pattern can be discerned.

Returning to the question of why the power spectrum of the total flux is steeper than
that of the flux radiated by individual annuli, we now see that this can be explained by the
diminution of the coherent radial range with increasing frequency shown in Figure 9.
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3.3. Finite Speed of Light

Our calculation for the first time correctly accounts for time delays while ray-tracing 3D
GRMHD simulation data. We would therefore like to quantify how our results are affected
by inclusion of this effect. The light curves and power spectra from calculations with and
without time delays are shown in Figure 10. The light curves are identical except that the
time delay calculation shows slightly less short timescale variation. This fact is illustrated
more clearly in the power spectra panel of this figure, which clearly shows that the fluctuation
power at high frequencies is diminished when one includes time delays.

This contrast is easily understood. Delay effects can diminish coherence in the received
signal when a region whose light crossing time is At varies coherently on timescales shorter
than At¢. On the other hand, enhancement of coherence by delay effects would require
remarkable contrivance because spatial and temporal fluctuations in the turbulence would
have to be correlated with the ray trajectories for particular observers. Consequently, photon
time delays in general decrease the fluctuation power. The depression of the fluctuation power
is confined to the highest frequencies because maintenance of emissivity coherence requires a
coordinating signal propagating across the region, but all signals, whether conveyed in bulk
fluid motion or by some wave mode, are limited to traveling no faster than c. It follows
that, for light travel time effects to suppress variability, the coordinating signals must be
relativistic. In the context of an accretion flow, relativistic signals are largely confined to
the innermost regions, which dominate the generation of high frequency fluctuations.

Because the time delay effect depends on the light’s path through the material and the
local velocity of the fluid, one expects it to depend on ¢ and m. We characterize its trend
over parameter space in Figure 11, where the difference in power-law exponents between
the calculation with time delays and that without time delays is plotted. In all cases, the
time delay calculation yields a steeper PDS. The contrast depends most strongly on accretion
rate, in the sense that it diminishes as the disk becomes more opaque; this trend is consistent
with the observation that as m increases, the inner portion of the disk becomes progressively
more obscured and contributes less to the power spectrum. Larger 9 produces slightly larger
deviations between the two methods. As the inclination angle increases, photon rays become
more nearly parallel to the disk’s orbital velocity. For those fluid elements with relativistic
velocities, the result is that fluid elements’ worldlines move closer to the lightcone, leading
to somewhat greater coherence of emissivity along the rays.
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3.4. Azimuthal Symmetry Condition

In order to save computational resources, we assumed in our simulation that the disk is
periodic in ¢ on intervals equal to 7/2. Any modes longer than this are not included in our
calculation, and the symmetry condition artificially gives rise to correlations at this scale.
The question then arises: are the absent modes and artificial symmetry important to our
prediction?

Even though we cannot rigorously evaluate the constraint’s ramifications without re-
peating our analysis for a run on the entire domain, some insight might come from a similar
simulation that used the full azimuthal extent (Schnittman et al. 2006). Their calculation
used a numerical code that inadvertently preserves near-constant aspect ratio by failing to
capture all dissipation as heat (De Villiers & Hawley 2003). Even though their numerical
techniques were different and no explicit cooling was used, our calculations share nearly
identical initial conditions (besides the full azimuthal extent) and yield similar disk thick-
nesses. Since the disk’s thickness dictates the poloidal size of turbulent eddies in the bulk,
we may expect that the characteristics of their correlations in ¢ will be applicable to our
system. They found that the surface density’s dominant azimuthal correlation lengthscale
is approximately 0.47, suggesting that our grid may be large enough to include the most
important modes.

To quantify the systematic effect of the m/2 periodicity, we can employ the partition
formalism previously introduced. For the purpose of this discussion, it is convenient to
label the quadrants by their panel labels in Figure 1, i.e., a, b, ¢, and d. The quadrants
are distinguished by the sign of their mean line-of-sight velocity (receding or approaching)
and their position (front or back). Quadrants a and ¢ are approaching, whereas b and d
are receding; quadrants a and b are in back of the black hole, whereas ¢ and d are in front.
Because relativistic effects dominate obscuration effects in determining the characters of their
light curves, it is easiest to think of the system in the optically thin limit. If only special
relativistic effects applied, the two receding quadrants would produce identical light curves,
as would the two approaching quadrants. However, general relativistic frame-dragging and
light deflection complicate the story. For example, light in a particular direction in the fluid
frame can be wrapped around the black hole and escape at a completely different angle.
Although the deflection angle is large only very near the black hole, most of the light is
produced at these same radii, so it can be a very important effect. For instance, looking at
Figure 1 we find that the most intense part of quadrant b is located on the opposite side of
the black hole in the image plane because the brightest light that which is emitted along
the orbital velocity has been bent around the black hole and focused toward the observer.
This phenomenon means that quadrant b is more like an “approaching” quadrant than a
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receding one.

With these points in mind, we can now explain what controls the distinctions in flux
and power spectrum between the different quadrants. For face-on views, they all contribute
identically to the light curve; as the viewing angle moves off-axis, special relativistic beaming
and boosting enhances the approaching sides, while general relativistic light bending and
frame-dragging enhance the back sides. The result is that over most of m—) parameter
space, quadrant a is the brightest (both approaching and in back of the black hole), d is the
faintest (both receding and in front), and b and ¢ are similar to one another (b is receding but
in back; ¢ is approaching but in front). The maximum flux contrast between the brightest
and dimmest quadrants never exceeds a factor of ~ 5. The slopes of their power spectra
follow the same trend seen in flux: o, > a, >~ a. > a4 on average, with no spectral slope
falling outside the range —2.4 < a < —1.8. However, relative to quadrant ¢, the quadrant
b becomes brighter and its PDS flatter as ¥ increases. In the summed light curve, the
contrasting effects largely cancel one another, so that the spectral slope of the composite
PDS can be described by a simple average of the quadrants’ individual power-law exponents.

In our calculation, the quadrants are precisely coherent at all frequencies when viewed
exactly face-on. As the inclination angle grows, they begin to become incoherent at the
highest frequencies, but even for ¥ = 7/2, the range of incoherent frequencies is still quite
limited. The reason for this behavior is that our symmetry condition makes their emissivity
precisely coherent, so such incoherence as exists is entirely due to time-delay effects; as just
discussed, they are small except at the highest frequencies. Thus, if the absolute power
spectrum from a single quadrant (before Doppler adjustments and obscuration effects) is
A%(v), our total power spectrum is 16A4%(v) when viewed on-axis, and when viewed off-axis
has essentially identical power at low frequencies, but slightly less at high.

By contrast, in a full 27 simulation we expect that the emissivities of the quadrants
would have very similar power spectra to the emissivity we calculate, but be completely
incoherent if azimuthal correlations extend only over angles >~ 0.47. The same repertory of
relativistic effects, both special and general, will still apply, but we expect that they will
similarly cancel in sum. Thus, a total flux power spectrum ~ 4A4%(v) should result, as only
the S, term contributes. In other words, if this reasoning holds, the shape of the power
spectrum observed from a full 27 disk would be quite similar to what we compute, but its
amplitude would be lower by about a factor of 4.
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4. Discussion and Conclusion

In this paper, we have presented a new, more physical method for estimating the tem-
poral variability of radiation from the optically thin (“coronal”) regions of 3D GRMHD
simulations. For the purpose of investigating variability, it is necessary at this stage to sep-
arate optically thin regions from optically thick because present-day global disk simulation
codes do not have the capacity to solve the transfer problem simultaneously with the dynam-
ics, and diffusion through optically thick regions materially alters the character of variability.
The key improvement over previous calculations is the use of data from an energy-conserving
code with precise control of the disk’s thermodynamics. In addition, we have shown how
to include photon travel time delays, although they have a relatively small impact on the
results shown here. We separated coronal emission from disk emission by integrating the
fluid emissivity from the scattering photosphere outward; the location of the photosphere
moves in a manner controlled by the nominal accretion rate in Eddington units, 7. Because
our density data—which determines the optical depth—was written only every 20M in time
over a period of 8000M, we were constrained to explore the disk’s power spectrum only over
the frequency range v € [3.5 x 1072,0.7] visco-

We found that the power spectrum of the observed flux’s fluctuations in this frequency
band is described well by a featureless power-law with index a ~ —2 for essentially all
optical depths (or, in this formalism, accretion rates) and inclination angles. Although most
of the fluctuation power has its physical origin in accretion rate fluctuations, the slope of
its power spectrum is steeper by ~ 1 than the slope of the accretion rate’s power spectrum.
Two separate effects combine to create this steepening: there is high frequency power in
the accretion rate due to radial epicyclic motions that do not contribute to variations in the
emissivity; and the radial coherence of different frequency modes declines with increasing
frequency. Thus, the power spectrum of accretion rate fluctuations is not a good proxy
for fluctuations in the coronal light. Because photon diffusion damping of high-frequency
emissivity fluctuations will likely steepen the power spectrum of the thermal luminosity, we
expect that the same will be true for the light curve of the thermal component.

Relativistic beaming and boosting cause the variance of the light curve to increase with
inclination angle, but do not materially change the shape of the power spectrum. The reason
for this perhaps counter-intuitive result is that Doppler effects flatten the power spectrum of
the approaching segment of the disk and steepen the power spectrum of the receding segment
so that the two changes compensate for one another.

Time-delay effects steepen the observed power spectrum at the highest frequencies. If
we had saved data from this simulation at intervals shorter than 20M, we expect that this
effect would have been increasingly important at the higher frequencies that would then have
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been accessible. For this reason, in any future work using simulation data to predict light
curves on short timescales, we strongly encourage proper accounting for photon travel times.

Our results span the frequency range ~ 2.5Hz — 500Hz if scaled to a M = 10M, black
hole and ~ 2.5 x 10~"Hz — 5 x 107°Hz for a M = 108 M, black hole. Low frequency QPOs,
which generally occur in GBHs at ~ 1 Hz, would therefore be at best only marginally
detectable in our data. High frequency QPOs, which are sometimes seen at ~ 200-300 Hz,
might in principle have appeared, but we see no evidence for any. On the other hand,
they appear in real black hole systems only in association with the transition to the steep
power law state. Although our simulation code very accurately conserves energy, the cooling
function we employ is no more than a toy-model. A more complete description of radiative
cooling will be necessary to understand spectral state transitions, and that might be a
prerequisite for understanding high frequency QPOs as well.

Our optically thin limit (i = 0.001) phenomenologically resembles the hard state of
Galactic black hole binaries in the sense that our definition of “coronal” eliminates any
optically-thick thermal disk in the inner part of the accretion flow. Intriguingly, the power-
law slope that we consistently find (o ~ —2) is crudely consistent with the mean slope of
the power spectrum measured in Cyg X-1 in the range 1 500 Hz: steepening from ~ —1.7
to ~ —2.4 Revnivtsev et al. (2000).

For higher accretion rates, our corona is restricted to the outer layers of the flow, more in
keeping with what is often imagined for AGN. A power-law slope ~ —2 is also very roughly
consistent with observations of these objects. For example, Markowitz (2009) shows that the
slope of the power spectrum in IC 4329A steepens from ~ —1 to ~ —2 across the frequency
range 107% 10~* Hz. Similarly, Markowitz et al. (2007) find that the power spectrum of
Mrk 766 steepens from ~ —1.5 to ~ —3 from ~ 3 x 10°® Hz to ~ 10~® Hz. In this latter
case, Markowitz et al. estimate that the central black hole mass may be only ~ 105107 M,
which would place our simulated frequency range roughly coincident with the observed band.

As already mentioned, the decrease in radial coherence length with increasing frequency
steepens the power spectrum of the aggregate light curve relative to the power spectrum of
the local emissivity. In our very approximate treatment, we described the result in terms of
a new, steeper power-law. A more careful and complete treatment might improve upon this
description. In particular, the factor that controls the radial coherence length is whether
the fluctuation frequency is larger or smaller than the local inflow rate. It is the outward
decrease of the inflow rate that leads to higher power at lower frequencies by stretching the
range of radial coherence. However, at sufficiently low frequencies, greater radial coherence
does not add appreciably to the power spectrum because material at larger radius does not
contribute much to the luminosity. At frequencies lower than the inflow rate at the radius
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within which most of the light is emitted, the slope of the composite flux power spectrum
should therefore match the slope of the emissivity power spectrum. One might then expect a
smooth roll-off from the slope of the emissivity power spectrum at these very low frequencies
to a steeper slope at high frequencies, similar to what is observed in the hard states of GBHs
and in AGN. In a simulation, the lowest reachable frequency is the inverse of the duration;
unfortunately, the radius within which our simulation reached inflow equilibrium enclosed
only a little more than half the luminosity, so we did not reach low enough frequencies to
see the change in slope.

One should also be aware of several other caveats in evaluating these comparisons with
observations. First, dissipation in magnetically-dominated plasmas is thought to entail par-
ticle acceleration across shocks or at reconnection sites. These processes can be much more
rapid than the orbital timescale, while the inverse Compton cooling rate in units of Qf is
~ (my/me)(Ls/Lg)~*(r/M)~*/2, for seed photon luminosity L,. Thus, when there is signifi-
cant thermal disk radiation, the inverse Compton cooling rate can likewise be much quicker
than the orbital frequency. Because our cooling function has a characteristic rate ~ Q. it
may underestimate high frequency variability. Second, our model focuses on the total coronal
luminosity, which is likely dominated by photons at energies an order of magnitude higher
than those generally studied in variability observations. If the power spectrum changes with
photon energy (and there are some hints of this: Markowitz et al. (2007)), these may not be
the appropriate comparisons to make. Third, our simulation did not distinguish the ther-
modynamic properties of the disk body and the corona. It is possible that a more complete
treatment of their thermal contrasts might alter the results.

In conclusion, we have presented a radiative cooling model, based directly on simulations
of 3D MHD turbulence in general relativity, that predicts the power spectra of fluctuations
in hard X-ray flux observed from AGN and GBHs. The calculation used a new ray-tracing
procedure for correctly tracking the propagation of light through time and space within the
time-dependent 3D GRMHD simulation data set. The spectral slope found from our model
~ —2, significantly steeper than the slope of the accretion rate power spectrum, depends
only weakly on the inclination and average accretion rate of the disk. Future simulations
with more complete physics and a more complete traversal of parameter space will shed
further light on this subject.

This work was supported by NSF grant AST-0507455 (JHK). We thank Charles Gam-
mie for his illuminating input regarding efficient bookkeeping algorithms for the time delay
calculation. The computer resources of the Homewood High Performance Computer Cluster
at Johns Hopkins University were used for our calculations.
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Fig. 1.— (a-d) Snapshots at—respectively—¢ = {m, 7/2,37/2,0}. Each image was taken at
Y =53° and ¢t = 9000M with m = 0.01. The axes mark the image’s vertical and horizontal
extent in the image plane in units of M. (Far Right) Logarithmic color map used to make

the images. The intensity is normalized to the maximum intensity of the composite image

shown in Figure 2.
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Fig. 2. (Left) Composite of the snapshots shown in Figure 1. (Right) Logarithmic color
map used for the image. The maximum intensity in the map has value unity.
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Fig. 3.— (Left) Normalized light curves (solid curves) for m = 0.01 and all values of ). The
light curves and their mean values (dashed curves) have been shifted vertically by incremental
factors of two for clarity. (Right) Normalized power spectra of these light curves compared
to their best power-law fits (dashed curves). The power spectra are separated by incremental
factors of 100. In both plots, the curves are ordered bottom-to-top in increasing order of 4.
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Fig. 4. (Left) Normalized light curves (solid curves) for ¥ = 29° and all values of 7. The
light curves and their mean values (dashed curves) have been shifted vertically by incremental
factors of two for clarity. (Right) Normalized power spectra of these light curves compared
to their best power-law fits (dashed curves). The power spectra are separated by incremental
factors of 100. In both plots, the curves are ordered bottom-to-top in increasing order of m.
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Fig. 5.— Exponents «a of the best power-law fits to the power spectra of the light curves
as functions of m (horizontal axis) and inclination angle (vertical axis). The departures
from o =~ —2 in the upper-right-hand corner of the plot are caused by the disk’s self-
obscuration. The black curves represent contours of R,. From bottom to top, R,(V,m) =
{risco, 3.5M, 6M, 12M ).
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Fig. 6.— (Left) Total flux F(¢) observed at ¥ = 5° for m = 0.001 (solid black curve)
compared to the accretion rate M (dotted blue curve) at v = 3.5M and emissivity £ at
r = 3.5M (dashed red curve). All rates are normalized to their time averages. (Right)
Power spectra of these rates and their best-fit power-laws. The values of the best-fit power-

law exponents are a;; = —0.9, oy = —1.2, and ap = —2.1.
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Fig. 7.— Ratio of the emissivity’s normalized power spectrum to the accretion rate’s normal-
ized power spectrum plotted as a function of radius and frequency. Each power spectrum was
smoothed over nine frequency bins before the ratio was taken in order to display trends in
the data more clearly. Black curves show the orbital frequency (solid curve), radial epicyclic
frequency (dashed curve), and vertical epicyclic frequency (dotted curve).
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Fig. 8. Ratio of the normalized power spectrum of dF'/dr to the normalized power spec-
trum of the emissivity as a function of radius and frequency. Each power spectrum was
smoothed over nine frequency bins before the ratio was taken in order to display trends in
the data more clearly.
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Fig. 9. (Left) Phase ¢(v,r) of dF/dr fluctuations when seen face-on (9 = 5°) for mh =
0.001. Note that we deviate from prior figure layouts and use a linear frequency scale here in
order to resolve small-scale features. In addition, we show only the lower half of our frequency
range. The dashed curve is the local inflow rate viyaow. (Right) The linear, periodic color
map used to generate this figure.
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Fig. 10.— (Left) Normalized light curves obtained from the calculation ignoring time delay
effects (dotted curve) and taking them into account (solid curve). (Right) Normalized power
spectra of these light curves compared to their best power-law fits; the dashed line represents
the best fit to the data with time delay effects, the dash-dot to the data in which time delays
were ignored. Both light curves are for ¥ = 29° and m = 0.01.
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Fig. 11.— Difference between the power-law exponents a from the calculation without
time delays to that with time delays as a function of 7 (horizontal axis) and ¥ (ver-
tical axis). The cases in the upper-righthand corner of the plot are heavily obscured.
The black contour curves there represent respectively from bottom to top R,(J,m) =
{r1sco,3.5M,6M,12M}.



