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n�jhu.edu; jhk�jhu.eduABSTRACTOn the basis of data from an energy-
onserving 3D general relativisti
 MHDsimulation, we predi
t the statisti
al 
hara
ter of variability in the 
oronal lu-minosity from a

reting bla
k holes. When the inner boundary of the 
orona isde�ned to be the ele
tron s
attering photosphere, its lo
ation depends only onthe mass a

retion rate in Eddington units _m. Nearly independent of viewing an-gle and _m, the power spe
trum over the range of frequen
ies from approximatelythe orbital frequen
y at the ISCO to � 100 times lower is well approximated bya power-law with index -2, 
rudely 
onsistent with the observed power spe
traof hard X-ray 
u
tuations in AGN and the hard states of Gala
ti
 binary bla
kholes. The underlying physi
al driver for variability in the light 
urve is variationsin the a

retion rate 
aused by the 
haoti
 
hara
ter of MHD turbulen
e, but thepower spe
trum of the 
oronal light output is signi�
antly steeper. Part of this
ontrast is due to the fa
t that the mass a

retion rate 
an be signi�
antly mod-ulated by radial epi
y
li
 motions that do not result in dissipation, and thereforedo not drive luminosity 
u
tuations. The other part of this 
ontrast is due tothe inward de
rease of the 
hara
teristi
 in
ow time, whi
h leads to de
reasingradial 
oheren
e length with in
reasing 
u
tuation frequen
y.Subje
t headings: a

retion, a

retion disks | galaxies: nu
lei | X-rays: binaries| bla
k hole physi
s | MHD | radiative transfer1. Introdu
tionIn a rough manner of speaking, the light from all a

reting bla
k holes, whether those ofstellar mass (Gala
ti
 Bla
k Holes, or GBHs) or those residing in gala
ti
 nu
lei with masses



{ 2 {106{109 times larger (A
tive Gala
ti
 Nu
lei, or AGN), 
an be divided into a thermal and a
oronal portion. The former 
orresponds to the part of the 
ontinuum spe
trum with a 
lear
hara
teristi
 energy (typi
ally � 1 keV in GBHs, � 10 eV in AGN) and is thought to bethe result of nearly-LTE emission from the surfa
e of the a

retion disk feeding the 
entralbla
k hole. The latter 
orresponds to the part of the 
ontinuum that extends approximatelyas a power-law from energies of order the thermal peak all the way up to � 100 keV and isthought to arise from inverse Compton s
attering of seed photons provided by the thermal
omponent. Both 
omponents vary. Compared at the same (temporal) frequen
y, the 
oronalpart generally varies with greater amplitude (Remillard & M
Clinto
k 2006) at frequen
ieswithin a few orders of magnitude of inner disk dynami
al frequen
ies Edelson et al. (2000);Breedt et al. (2009). It is the obje
t of this paper to link, for the �rst time, the 
hara
ter ofthis 
oronal variability to heating pro
esses dire
tly driven by a

retion dynami
s.Coronal variability from bla
k holes has been the subje
t of empiri
al study for severalde
ades. The simplest way to 
hara
terize this phenomenon is in terms of its Fourier powerdensity spe
trum (PDS), P (�). Over several orders of magnitude in frequen
y, most of theobserved 
u
tuation power is 
ontained in a 
ontinuum that varies smoothly with frequen
y.It is 
onvenient to des
ribe this 
ontinuum in terms of its logarithmi
 derivative with fre-quen
y �. With the sign 
onvention that P (�) / ��, these slopes are 
ommonly in the range�2 < � < 0.GBHs move among a repertory of spe
tral states in whi
h the balan
e between thermaland 
oronal luminosity 
hanges. The detailed shape of P (�) for the 
oronal luminosity ap-pears to be 
orrelated with the spe
i�
 spe
tral state of a GBH (as summarized in Remillard& M
Clinto
k (2006)). In the \low/hard" state, � tends to de
rease slowly with in
reasingfrequen
y: for example, in GROJ1655-40, � ' 0 for � < 1 Hz, and then gradually falls toless than �1 at higher frequen
ies, while for Cyg X-1, it de
reases from ' �1:7 to ' �2:4over approximately the same frequen
y range (Revnivtsev et al. 2000). By 
ontrast, in the\steep power-law" state of this system, � ' �1 over almost the entire observed frequen
yrange, from 0:01 to 100 Hz. In the \thermal" state, in whi
h the 
oronal luminosity is soweak that it dominates the spe
trum only at 
omparatively high energies, � ' �1 at lowfrequen
ies like the steep power-law state, but steepens to ' �2 at high frequen
ies, some-what resembling the low/hard state Cyg X-1, but with mu
h smaller amplitude variations.Despite the 
oronal 
omponent's 
omparative weakness in the thermal state, its variationsdominate those of the thermal 
omponent, at least for photons of more than a few keV(Churazov et al. 2001). GBHs 
an also exhibit quasi-periodi
 os
illations (QPOs): in thelow/hard state at � 1 Hz, and sometimes in the transition to the steep power-law state atfrequen
ies of several hundred Hz.



{ 3 {In AGN, whose spe
tral state does not appear to 
hange in the same manner, the powerspe
tra may be more simply des
ribed: typi
ally �2 �< � �< �1 below some 
hara
teristi
frequen
y, but falling to �< �2 at higher frequen
ies (Markowitz et al. 2003, 2007; Ar�evaloet al. 2008). QPOs, whi
h, parti
ularly in their lower frequen
y variety, are easy to see inthe low/hard state power spe
tra of GBHs, are either entirely absent or at least diÆ
ult todete
t (Vaughan & Uttley 2005); there is at present only one reasonable 
andidate in an AGN(Gierli�nski et al. 2008). The variability of AGN and GBHs 
an be linked (approximately)through a simple s
aling: the frequen
y of the roll-over in the power spe
trum appears tobe inversely proportional to the mass, as the most naive theory might predi
t, albeit with a
orre
tion for the a

retion rate (M
Hardy et al. 2006).In order to understand the nearly featureless 
hara
ter of X-ray power spe
tra, manydisparate theories have been proposed. The physi
al 
ontent of these theories has graduallyin
reased over the years. The very �rst ideas were purely formal: the aperiodi
 nature ofthe light 
urves of Cyg X-1 implied to some that they were due to un
orrelated shot noise(Terrell (1972)). Phenomenologi
al models followed, as others supposed that power spe
trathat were power-laws in frequen
y resulted from a 
on
uen
e of power-laws|in radius|thatmight relate the lo
al emissivity or propensity to hot spots to the orbital frequen
y (Kroliket al. 1991; Abramowi
z et al. 1991; Pe
h�a�
ek et al. 2008). These models are 
onsistent withthe observation that many AGN are phase in
oherent (Krolik et al. 1993) and do not exhibitlimit 
y
le behavior (Czerny & Lehto 1997). The fa
t that there 
an be substantial powerat frequen
ies far below the orbital frequen
y of the inner disk 
oupled with the assumptionthat X-rays are predominantly emitted at small radii suggested to some that dynami
s atlarge radii, where the dynami
al times
ales are longer, 
ontrol the low frequen
y behaviorby modulating the mass a

retion rate. For example, Lyubarskii (1997) sought to explainthe shape of the power spe
trum in terms of 
u
tuations at large radius in the disk's ratioof stress to pressure, the Shakura-Sunyaev � parameter. Elaborating this idea, Churazovet al. (2001) suggested that su
h 
u
tuations might explain the 
onne
tion between PDSform and spe
tral state in GBHs. Alternatively, Axelsson et al. (2006) proposed that the
hanges in power spe
trum might be 
aused by disk pre
ession.None of this early work had any dire
t 
onne
tion to physi
al me
hanisms. Most im-portantly, in the past �fteen years we have 
ome to realize that a

retion is driven by MHDturbulen
e, and the turbulen
e is stirred by the magneto-rotational instability (Balbus &Hawley 1998). To move from phenomenology to physi
s, models must make 
onta
t withthe underlying physi
s of a

retion. For example, studies of the long-term behavior of MHDturbulen
e might determine whether the 
u
tuations in � suggested by Lyubarskii (1997)and Churazov et al. (2001) a
tually o

ur. It would also be highly desirable to link moredire
tly 
u
tuations in the a

retion rate with 
u
tuations in light output. Although in the



{ 4 {long-run the energy available for radiation is governed by the a

retion rate, time-dependentdisks may have an a

retion rate that is not exa
tly the same at all radii, the heating ratemay not exa
tly follow even the lo
al a

retion rate, time is required to generate photonson
e gas is heated, and the photons, on
e emitted, 
an take a �nite time to make their wayout of the disk. Indeed, Reig et al. (2006) argue on the basis of the distin
t variability prop-erties of the 
oronal and thermal 
omponents in the soft state, and the 
orrelation betweenluminosity and 
oronal power-law slope, that 
u
tuations in the a

retion rate 
annot ontheir own explain the observed variability in GBHs.More re
ent work has begun to follow this path, but typi
ally has used proxies for theradiation rate rather than a measure of the time-varying luminosity itself. Hawley & Krolik(2001) took the �rst step. They 
omputed the power spe
tra of both the mass a

retionrate in the plunging region and the volume-integrated magneti
 stress, with the thoughtthat one or the other would be a reasonable predi
tor of the time-dependen
e of the lightoutput. The two power spe
tra were similar, but not identi
al, both 
rudely des
ribableas power-laws with � ' �1:5. Armitage & Reynolds (2003) elaborated this approa
h.Assuming that the lo
al emissivity follows dire
tly from the lo
almass a

retion rate (and notseparating the 
oronal part from the thermal part), they used the verti
ally-integrated andazimuthally-averaged magneti
 shear stress from 3D pseudo-Newtonian MHD simulations asa proxy for the lo
al a

retion rate. Pla
ing the resulting emissivity in the disk's equatorialplane and assuming further that the 
uid followed 
ir
ular orbits, they 
al
ulated the light
urves seen by distant observers, allowing for general relativisti
 ray-paths and Doppler-shifting. Even though the PDSs of individual radial annuli were well des
ribed by brokenpower-laws (�1 = �1 and �2 = �3:5) whose breaks were near the lo
al orbital frequen
y,the superposition of these PDSs|be
ause of the radial dependen
e of the emissivity|ledto � = �2 power-law PDSs in the total output. Ma
hida & Matsumoto (2004) 
ame tosimilar 
on
lusions based on a Fourier analysis of the mass a

retion rate in the plungingregion. Moving slightly 
loser to in
orporating radiation me
hanism physi
s, S
hnittmanet al. (2006) used data from 3D MHD simulations in full general relativity to predi
t modellight 
urves and power spe
tra from the thermal 
omponent alone. Most re
ently, Reynolds& Miller (2009) studied the 
u
tuations in a variety of dynami
al quantities monitored in a3-d pseudo-Newtonian MHD simulation, hoping to �nd an origin for QPO behavior.In this paper, we seek to 
onne
t dynami
al 
al
ulations still more tightly to radiation.The tool we bring to bear on this problem is a new fully general relativisti
 3D MHDsimulation 
ode (des
ribed in Noble et al. (2009)). Be
ause this 
ode intrinsi
ally 
onservesenergy, it 
an self-
onsistently relate dynami
s to heating. However, be
ause in
lusion ofsimultaneous radiation transfer is not yet feasible, we 
annot provide a 
omplete a

ountof the radiation output. In parti
ular, photon di�usion times within the disk body are so



{ 5 {long (shearing box 
al
ulations that do in
lude radiation transfer have shown that they aregenerally � 10 orbital periods: Hirose et al. (2006)) that di�usion delays 
an substantiallya�e
t the time-dependen
e of the emerging light. Consequently, in this paper we fo
us onthe variability of the luminosity from the 
oronal region, where opti
al depths are likely nomore than order unity (see, e.g., Ibragimov et al. (2005)).The spe
i�
 example we treat is one in whi
h the bla
k hole rotates with spin parametera=M = 0:9. Radiation is 
reated with an emissivity in the 
uid frame whi
h dependson the lo
al temperature in a way designed to give the disk a desired aspe
t ratio. Anydissipated heat is radiated on an orbital times
ale; in this fashion, we attempt to make thetime-dependen
e of the light output follow 
losely the time-dependen
e of heat-generationby su
h me
hanisms as sho
ks or magneti
 re
onne
tion. The time and energy at whi
hphotons arrive at in�nity are 
omputed on the basis of fully general relativisti
 ray-tra
ingin
luding an allowan
e for all travel time e�e
ts.The remainder of this paper is organized as follows: In Se
tion 2 we remind the readerof the salient 
hara
teristi
s of our simulation and detail the new features of our ray-tra
ingmethod. In that se
tion we also de�ne our time-series analysis methodology. Se
tion 3presents our results, whi
h we dis
uss in Se
tion 4.2. MethodologyFor more than a de
ade, MHD turbulen
e driven by the magnetorotational instabilityhas been re
ognized as the prime driver of a

retion (Balbus & Hawley 1998). Numeri
alsimulations are the most powerful tool we have for studying turbulen
e, and in re
ent yearsmethods have been developed that permit simulations of a

retion disks over signi�
antradial ranges in full 3D using general relativisti
 dynami
s (De Villiers & Hawley 2003;Shafee et al. 2008; Noble et al. 2009). From these and analogous 2D simulations (Gammieet al. 2004; Fragile & Meier 2009), a 
onsistent pi
ture has emerged, despite a wide range ofnumeri
al algorithms and gridding s
hemes: Most of the a

reted material 
ows through adense disk that orbits the bla
k hole at very nearly the angular frequen
y of 
ir
ular orbitsin the equatorial plane. Within this dense disk, relatively small velo
ity 
u
tuations aresuperposed on the bulk's orbital motion. Higher in latitude, the disk be
omes less dense,more magnetized, and more organized in both magneti
 �eld and velo
ity.The simulation 
ode we used to 
reate the data dis
ussed here was des
ribed in Nobleet al. (2009). It is an intrinsi
ally 
onservative ideal GRMHD 
ode 
alled HARM3D thata

urately 
aptures any grids
ale numeri
al dissipation as heat. Numeri
al dissipation in



{ 6 {many ways emulates natural dissipation; when sho
ks 
ollide and magneti
 �elds re
onne
t,entropy is 
reated and the gas is heated. Left un
he
ked, the 
ontinual dissipation wouldmake mu
h of the disk unbound and lead to a progressively growing disk thi
kness. Bothto permit 
reation of a (statisti
al) steady-state and to tra
k the rate at whi
h energyis dissipated, we inserted into the stress-energy 
onservation equation an arti�
ial 
oolingfun
tion; i.e., this equation was given the form r�T �� = �Lu�, where r denotes a 
ovariantderivative, T �� is the 
omplete stress-energy tensor, L is the radiative emissivity in the 
uidframe, and u� is the 
uid four-velo
ity. The 
ooling fun
tion L = 
K�f(T=T�), where 
Kis the lo
al Keplerian frequen
y, � is the proper thermal energy density, and f(T=T�) is a
ontinuous fun
tion that is zero for T=T� < 1 and in
reases at higher temperatures. Thelo
al target temperature T� is a fun
tion of radius 
hosen to regulate the disk to a nearly
onstant aspe
t ratio H=r; in the simulation dis
ussed here, H(r)=r � 0:05 � 0:12. Onlygravitationally bound material is 
ooled, and (as suggested by the form of our stress-energyequation), the radiation is assumed to be isotropi
 in the 
uid frame. This simple radiationmodel was used be
ause we are primarily interested in the bolometri
 emission from the diskand wish to apply it to a wide variety of bla
k hole systems. A more model-dependent 
oolingfun
tion 
ould also be used (Fragile & Meier 2009), but it would be 
omputationally moreexpensive and would also require 
hoosing both a spe
i�
 bla
k hole mass and an a

retionrate.Our numeri
al domain was divided into 192� 192� 64 
ells in the radial, poloidal, andazimuthal dire
tions respe
tively, with r 2 [1:28; 120℄M , � 2 [0:05�; 0:95�℄, � 2 [0; �=2℄1.The radial dis
retization is logarithmi
|�r / r|to resolve �ner features at smaller radius.The azimuthal resolution is 
onstant, and the poloidal dis
retization is rare�ed at the polesand 
on
entrated at the equator.The pressure maximum of the initial distribution|at r = 25M|sets the lo
ation withinwhi
h a well de�ned a

retion 
ow exists. The disk rea
hes an in
ow steady-state for r �14M over the period t = [7000M; 15000M ℄; we examine only this epo
h here. For referen
e,the orbital period at radius r is Torb(r) = 3:1 � 10�4 (M=10M�) h(r=M)3=2 + a=Mi s. Thespan �t = 8000M represents approximately 287 orbital periods at the innermost stable
ir
ular orbit (ISCO) and 10 orbital periods at the initial pressure maximum. For our bla
khole spin parameter, rISCO = 2:32M and the horizon is lo
ated at rhor = 1:44M . The disk'srest-mass density �, 4-velo
ity u� and 
ooling fun
tion L evaluated at all grid points arewritten to disk every 20M in time. We use this data as input to our radiation transfer1Note that throughout this paper we use geometrized units with G = 
 = 1 unless mentioned otherwise;distan
es and times are therefore s
aled to the mass of the bla
k hole M .



{ 7 {pro
edure to 
reate light 
urves. Any emission outside r = 25M is ignored.Be
ause the fo
us of this paper is time-variability properties, we point out that ourmethod has two limitations that a�e
t the shortest times
ales. Sampling at intervals of 20Mmeans that no frequen
ies higher than 1=(40M) 
an be probed; our Nyquist frequen
y is 0.7times the orbital frequen
y at the ISCO. The other limitation 
omes from our 
ooling rate.Be
ause the 
hara
teristi
 
ooling rate is � 
K , heating 
u
tuations on times
ales shorterthan � 
�1K 
annot be translated into equally rapid emission 
u
tuations, even thoughsome 
ooling me
hanisms, notably inverse Compton s
attering, 
an often have 
ooling rates
onsiderably faster than � 
K . In sum, we 
annot present results on frequen
ies above' 0:7�ISCO, and the form of our 
ooling fun
tion potentially suppresses some 
u
tuationpower at the higher frequen
y end of the range we do dis
uss.2.1. Radiation TransferWithin the simulation, we do not 
onsider any intera
tion between the emitted radiationand the material. However, more realisti
ally, there is always some opa
ity, and in most
ir
umstan
es the dominant opa
ity in the material near a bla
k hole is ele
tron s
attering.This opa
ity leads to a natural division of the radiation in two parts: that emitted inside oroutside the photosphere. Within the photosphere, s
attering 
an add substantially to thetime a photon 
an take to rea
h the outside, washing out 
u
tuations in intrinsi
 emissivity;outside the photosphere, of 
ourse, s
attering has very little e�e
t on photon es
ape time. Inaddition, photons deriving their energy from dissipation inside and outside the photosphere
an be distinguished spe
trally: Inside the photosphere, thermalization is strong, and thelo
al spe
trum should be approximately bla
k body, at a temperature � 10 eV in AGN,� 1 keV in GBHs. By 
ontrast, outside the photosphere, mu
h lower gas densities and mu
hhigher ratios of heating density to mass density lead to mu
h higher temperatures, and theprimary emission me
hanism is inverse Compton s
attering, so that the radiated spe
trumis 
hara
teristi
ally a power-law extending well into the hard X-ray regime. In order tomake a realisti
 estimate of the light 
urve dire
tly from the simulation's emissivity data,we therefore restri
t our e�orts to the 
oronal hard X-ray emission, whose sour
e is near oroutside the s
attering photosphere.To lo
ate that photosphere requires a 
al
ulation of the opa
ity, yet its magnitude isnot de�ned in 
ode-units be
ause the simulation requires no absolute density s
ale. Instead,we determine it after the fa
t by the following pro
edure: We distinguish quantities in 
ode-units from quantities in physi
al units by atta
hing a subs
ript 
 to the former, and leavingthe latter unlabeled. If a fra
tion � of the rest-mass of a

retion were transformed into



{ 8 {luminosity at in�nity, it would beL = � Z d�d�p�g�
ur(�=�
)(GM=
2)2
3 = � _M
 (�=�
)(GM=
2)2
3 (1)be
ause the unit of length is GM=
2 if G = 
 = 1, and u�, when measured in units of 
,is dimensionless. Here, g is the determinant of the metri
. Normalizing the luminosity tothe Eddington luminosity LE, we �nd that the relation between physi
al density and 
odedensity is �=�
 = 4�
2�TGM _M
 L�LE ; (2)where �T is the ele
tron s
attering opa
ity per unit mass, and _M
 = 0:0177 is the time-averaged rest-mass a

retion rate in 
ode units. By fortunate 
oin
iden
e, opti
al depthsdepend only on L=(�LE), whi
h we abbreviate as _m, be
ause the unit of length is /M .Be
ause our a

retion 
ow is far from spheri
ally symmetri
, the lo
ation of the photo-sphere is a fun
tion of the observer's position. We imagine, then, that numerous \
ameras"are pla
ed on a grid in polar angle # and azimuthal angle ' on a very large sphere (radius106M) 
entered on the bla
k hole. From ea
h 
amera, we de�ne a bundle of geodesi
s thatrun through the problem volume. These are parameterized by an aÆne parameter � normal-ized so that an observer in the lo
al 
uid frame would measure the di�erential length alonga ray as ds = �d�; (3)where � is the frequen
y of the photon as measured by that observer. If N� = dx�=d� is the4-ve
tor tangent to the null ray then � = �
amz (4)where z is the redshift fa
tor between the lo
al 
uid frame observer and the 
amera frame:z = (u�N�)
am(u�N�)� : (5)In the numerator of this ratio, the 4-velo
ity is that of the 
amera; in the denominator, it isthat of the 
uid at some point along the ray. We then integrate the opti
al depthd� = ��T�d� (6)along these geodesi
s in order to determine the lo
ation of the photospheri
 surfa
e for that
amera. The photosphere surfa
e is de�ned to lie at a 
onstant � = �Æ, whi
h we set to unity,i.e., �Æ = 1.



{ 9 {On
e the lo
ation of the photosphere is determined, we integrate the emissivity alongthese geodesi
s from the photosphere out to the 
amera; we assume no s
attering takes pla
ealong these rays: dd� � I��3� = j��2 ; (7)where I� is the spe
i�
 intensity and j� is the 
uid-frame emissivity, given by:j� = L4� Æ (z� � �
am) : (8)Integrating over all �
am to �nd the bolometri
 luminosity is equivalent to setting �
am = 1and � = 1=z; the latter pro
edure is done in pra
ti
e. To set the units of the observedluminosity, we note that the units of power density are the units of energy density (�
2)divided by the unit of time (GM=
3). The end result isL = 4�
7 _m�T (GM)2 _M
 : (9)However, these units are also unne
essary be
ause all our results for variability will be shownin fra
tional terms, relative to the mean luminosity.We are therefore left with three parameters to explore: _m, # and '. We vary _m from avalue low enough that the entire 
ow is opti
ally thin up to the Eddington limit:_m 2 f0:001; 0:003; 0:01; 0:03; 0:1; 0:3; 1:g : (10)The simulation should not be biased toward any parti
ular pole, so we sample # only overone hemisphere, uniformly in sin#:# 2 f5Æ; 17Æ; 29Æ; 41Æ; 53Æ; 65Æ; 77Æ; 89Æg : (11)Similarly, the physi
s of our a

retion disk has no spe
ial azimuthal orientation, so anyobserved dependen
e of the light 
urves on ' must be only statisti
al 
u
tuations. However,our simulation domain spans only the �rst quadrant in azimuth, from 0 to �=2.To 
ope with this limitation, we remap the density and velo
ity data into the otherquadrants, but not the emissivity. By doing so, we 
an 
ompute the portion of the lightrea
hing in�nity from this quadrant alone with a proper allowan
e for opti
al depth e�e
tsin all dire
tions. In prin
iple, there are four di�erent ways we might have pla
ed the radi-ating quadrant with respe
t to the quadrants having only opa
ity. From the expe
tation ofazimuthal symmetry, it then follows that a full des
ription of the statisti
al 
hara
ter of thelight 
urve 
an be obtained from viewing this quadrant from only four azimuthal dire
tions,whi
h we 
hoose as ' 2 �0; �2 ; �; 3�2 � : (12)



{ 10 {This pie
ewise 
onstru
tion of the 
omposite image is illustrated in Figures 1 - 2. Imagesfrom di�erent ' are shown in Figure 1, and their sum is plotted in Figure 2. We �nd thatframe-dragging of photons 
an 
ause emission from one quadrant of the simulation domainto spread into all quadrants of the image plane. The total 
ux of a quadrant varies with' sin
e 
ertain values orient the disk's orbital velo
ity 
loser to the line of sight. Figures 1and 2 will be helpful referen
es in our later dis
ussion about how the arti�
ial azimuthalsymmetry 
ondition in
uen
es our variability predi
tions in Se
tion 3.4.Tra
king the light through the simulation data is 
ompli
ated by the fa
t that spa
e-time's 
urvature means that a set of photons rea
hing an observer at one instant may orig-inate from the a

retion 
ow over a wide range of 
oordinate times. Armitage & Reynolds(2003) in
luded the e�e
t of time delays, but used an in�nitesimally thin emission regionwhi
h interse
ted ea
h geodesi
 only on
e. This meant that they did not have to propa-gate the light rays through the simulation data, as we must be
ause our emission region isextended.There are many ways to go about the bookkeeping inherent to this problem, but dif-ferent algorithms pla
e vastly di�erent demands on 
omputer memory. Ray-tra
ing as thesimulation runs is expensive, memory intensive, and not amenable to exploration sin
e ad-justments made to the ray-tra
ing s
heme would require rerunning the simulation2. For thisreason, we adopted a post-pro
essing pro
edure, whi
h means that our time resolution isset by the rate at whi
h we output simulation data. As a ray traverses spa
etime, we usequad-linear (linear in spa
e and time) interpolation to determine the ne
essary quantitiesalong the ray's path. This interpolation is done with pairs of simulation data sli
es at atime in order to redu
e the 
al
ulation's memory footprint. Rays are organized into sta
ksof snapshots, ea
h representing a bat
h of rays distributed over the image plane that rea
hthe observer syn
hronously. Ea
h snapshot then depends on a �nite span of simulation data,or rather, a given time sli
e of simulation data in
uen
es a sequen
e of snapshots.In Noble et al. (2009), we spent mu
h e�ort to ensure our ray tra
ing 
al
ulation was
onverged with respe
t to the number of light rays used per image; following the analogy witha pinhole 
amera, we will refer to them as pixels in our 
amera. We found best performan
eusing a nonuniform pixelation that approximates a proje
tion of the simulation's grid ontothe image plane. Using the radial pro�le of 
ux at in�nity dF=dr as our 
onvergen
e 
riterion,we found that Npix = 2552 nonuniform pixels and Npix = 12002 uniform pixels result inapproximately the same level of a

ura
y (largest relative error over r is 5%) when 
omparedto a 
al
ulation with Npix = 15002 uniform pixels.2See De Villiers (2008) for an algorithm that performs the ray-tra
ing in situ.
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al
ulation yields a fun
tion F (#; '; t; _m) whi
h represents thebolometri
 
ux for an observer at 
onstant radius (r = 106GM=
2) and time t. In thefollowing analysis unless expli
itly stated, we integrate F over ' to yield a light 
urve for afull 2� disk. Our goal is then to understand the temporal 
hara
ter (e.g., power spe
trum,varian
e) of this fun
tion with respe
t to the remaining parameters (i.e. #; _m).Given a fun
tion de�ned on a set of N dis
rete times F (tn) (where n = 0; : : : ; N � 1),we de�ne its dis
rete Fourier transform F̂ (�) at frequen
y � asF̂ (�) = 1N N�1Xn=0 F (tn)e�2�i�tn (13)where � 2 f1=T; : : : ; N=2Tg, and T = tN�1 � t0. As remarked earlier, our Nyquist limit is�max = (40M)�1 ' 0:7�ISCO, where �ISCO is the orbital frequen
y at the ISCO.We de�ne the normalized PDS of the light 
urve F (t) su
h that it is a measure of thefra
tional varian
e per unit frequen
y:P (�) = 2T�F 2 ���F̂ (�)���2 ; (14)where �F is the time average of F (t) 3. Sin
e F̂ (�) is a 
omplex number, we 
an represent itin terms of its magnitude and phase: F̂ (�) = A (�) ei (�).Observed light 
urve power spe
tra are often des
ribed in terms of a best-�tting power-law; as we will see, our results resemble power-laws at about the same level of a

ura
y.Determining the best-�t slope to the power spe
tra of our light 
urves, however, is somewhatarbitrary be
ause we do not know the \error distribution" of our data (the relevant ensemblefor us would be a large set of simulations begun with slightly di�erent initial 
onditions).Be
ause our goal is only qualitative des
ription, we 
hoose a very simple approa
h: equalstandard error at ea
h frequen
y point. That is, to �nd the best-�t power-law slope for a3These power spe
tra a

urately des
ribe our �nite duration simulation. However, as pointed out byDeeter & Boynton (1982) and Deeter (1984), power spe
tra with slopes steeper than �2 may be subje
t toarti�
ial leakage of 
u
tuation power from low frequen
ies to high. This problem 
an be signi�
ant when thepower spe
trum is substantially steeper than �2 and extends to frequen
ies signi�
antly lower than thoseprobed by the experiment (i.e., mu
h lower than the inverse of its duration). Be
ause the slope we measureis only slightly more negative than �2 over most of the parameter spa
e of interest, we believe that thisartifa
t may have only limited e�e
t, but only mu
h longer simulations 
an de�nitively answer this question.
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trum, we minimize the quantity�2e� =Xi [P (�i)� C��i ℄2 (15)with respe
t to C and �. This form tends to weight most heavily the highest de
ade offrequen
ies be
ause the frequen
y points are separated by a 
onstant �� = (8000M)�1.A key physi
al question we wish to explore is: how well 
orrelated is the variabilityat di�erent radii? Answering this question will help us understand the light 
urve's powerspe
trum and provide a 
ontext for 
omparison to other models (e.g.,Lyubarskii (1997)).Correlations are performed by �rst de
omposing the light 
urve's PDS into partitions. Letthere be N partitions, ea
h with a di�erent light 
urve Fn (t) so that our total light 
urveis their simple sum: F (t) = PNn=1 Fn (t). The total power spe
trum P (�) 
an therefore beexpressed as a sum of the partitions' PDSs (Sa) plus a sum that depends on how well thedi�erent modes are 
orrelated (Sb):P (�) = 2T�F 2 ���F̂ (�)���2 = 2T�F 2  Xn F̂n (�)! Xm F̂m (�)!� (16)= 2T�F 2 "Xn A2n + 2Xm Xn>mAnAm 
os (� nm)# (17)= Xn �F 2n�F 2Pn + 4T�F 2 Xm Xn>mAnAm 
os (� nm) (18)= Sa + Sb: (19)Here � nm =  n �  m is the di�eren
e in phase at frequen
y � between two partitions.Note that even though P (�) is independent of our partition s
heme, the relative sizes ofSa and Sb are not. If the An are all of similar magnitude, then Sa=Sb ! 0 as N ! 1(Sb � N (N � 1) while Sa � N) and Sb=Sa ! 0 as N ! 1 (there is only one partition andone signal is perfe
tly 
oherent with itself). If the partitions are perfe
tly in
oherent, thenP ' Sa. Conversely, if they are perfe
tly 
oherent, then P ' Sb for N > 2.3. Results3.1. Light Curves and Power Spe
tra: Dependen
e on A

retion Rate andIn
linationSample light 
urves and their 
orresponding power spe
tra 
an be seen in Figures 3 and4, the former displaying how they 
hange with viewing angle # at �xed _m, the latter how
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hange with a

retion rate _m at �xed #. Changing in
lination does relatively little toalter long time-s
ale 
u
tuations, but 
an lead to di�eren
es on short time-s
ales. On theother hand, 
hanging the opa
ity 
an lead to substantial di�eren
es in the light 
urve evenwhile the viewing angle remains the same. Remarkably, however, the gross shape of thepower spe
trum is almost invariant to both sorts of 
hanges: the best-�t power-law index is' �2 for all but the highest a

retion rates and in
linations (Fig. 5).The strongest e�e
ts in
uen
ing the in
lination dependen
e of variations are relativisti
beaming and boosting, whi
h be
ome more important as the orbital velo
ity be
omes largerand more nearly parallel to the outgoing geodesi
s. They therefore have the greatest e�e
ton radiation issuing from the smallest radii when viewed at high in
lination. Be
ause thosesame inner radii have the highest dynami
al frequen
y, one might then expe
t a boost in thehigh-frequen
y portion of the power spe
trum at large #. In relative terms, this does noto

ur|as we have seen, the slope of the power spe
trum depends only weakly on in
lination,ex
ept when _m is quite large (see further dis
ussion later in this subse
tion). Nonetheless,although the relative varian
e 
hanges little with in
lination, the absolute varian
e, as wellas the absolute luminosity, does in
rease when the disk be
omes more edge-on, as has alsobeen seen in previous 
al
ulations (Armitage & Reynolds 2003; S
hnittman et al. 2006).Be
ause we explore only relative variability, the absolute luminosity's proportionalityto _m is irrelevant to our dis
ussion. The a

retion rate in
uen
es the light 
urves in our
al
ulations only by setting the opa
ity s
ale. The a

retion rate is therefore degenerate withour 
hoi
e of �Æ, and we 
an speak equivalently in terms of a

retion rate or opti
al depth.When the opa
ity is dominated by ele
tron s
attering, the disk is 
ompletely transparentfor a

retion rates _m = 0:001 or lower. In
reasing _m moves the photosphere farther fromthe disk's midplane, and emission from high latitudes be
omes more dominant be
ause ourdisk follows a nearly 
onstant H=r pro�le. At the same time, in
reasing _m leads to a relativesuppression of light from outer radii be
ause the disk surfa
e density, and hen
e its opti
aldepth, in
reases rapidly outward. For this reason, the largest a

retion rates sele
t out
u
tuations from the innermost and uppermost regions of the (bound) a

retion 
ow.This pruning of the 
oronal volume with in
reasing _m is the most likely explanation forthe fa
t that the relative varian
e of the light 
urves monotoni
ally in
reases with a

retionrate, from 0:04 at _m = 0:001 to 0:09 at _m = 1. As the region above the photosphere shrinksin radial and verti
al extent with _m, it 
ontains fewer independently-
u
tuating volumes, sothat their summed emission has larger fra
tional 
u
tuations.In
reasing _m also leads to greater obs
uration of high in
lination observers' views ofthe inner disk. It is this e�e
t that explains the steepening of the best-�t power-law in the
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orner of Figure 5. Sin
e we restri
t the emission to r < 25M while the diskmatter extends out to r = 120M , suÆ
iently large a

retion rate and in
lination angle 
anlead to 
omplete obs
uration of the emission region. The radius within whi
h all emission isobs
ured, Ro, is 
onsequently an in
reasing fun
tion of in
lination and a

retion rate. Curvesshowing how Ro depends on _m and # are also shown in Figure 5. Only when # > 60Æ is thisobs
uration e�e
t signi�
ant. Be
ause the lo
ation of the obs
ured region is sensitive to thegeometry of the disk|whi
h is arti�
ially tuned to have a near 
onstant aspe
t ratio|thesteepening of the 
u
tuation power spe
trum due to obs
uration may be arti�
ial.3.2. The Opti
ally Thin Limit: Origin of the VariabilityThe most obvious explanation for variability in radiative output is variability in the a
-
retion rate. Let us �rst examine the relationship between the lo
al emissivity and a

retionrate to see if this is indeed true for our simulation. In Figure 6 we 
ompare the a

retion rateand emissivity at r = 3:5M to the light 
urve (integrated over the entire simulation) mea-sured fa
e-on (# = 5Æ). We 
hoose to 
ompare behavior at r = 3:5M to the total light 
urvebe
ause it is the radius of the brightest annulus, and should therefore be a major 
ontribu-tor to the 
omposite light 
urve. A nearly-polar viewing angle minimizes relativisti
 e�e
ts,simplifying the 
omparison of the observed light 
urve to lo
al emissivity. As expe
ted, thedisk-integrated light 
urve follows the same large amplitude, long times
ale 
u
tuations seenin the a

retion rate and emissivity at r = 3:5M . However, it la
ks the short times
alevariability of the lo
al emissivity and a

retion rate. The same e�e
t appears, of 
ourse, inthe power spe
tra. At this radius (and at most of the others in the steady-state portion ofthe disk), the a

retion rate and emissivity power spe
tra are approximate power-laws withexponents � �1 and � �1:5, respe
tively, signi�
antly shallower than the total light 
urvepower spe
trum, for whi
h the overall slope is ' �2.In order to elu
idate why 
u
tuations in the lo
al properties have more high frequen
ypower than the total light 
urve, and to understand better to what degree the a

retionrate drives the radiation, we examine the relationships between the power spe
tra of _M(r; t),L(r; t), the 
ux from r as it is observed on the polar axis at in�nity (dF=dr), and the total
ux F (t) in the polar dire
tion. We have already seen that j _̂M j2 and jL̂j2 are similar butnot identi
al. A 
loser 
omparison of these two power spe
tra may be seen in Figure 7,whi
h shows the ratio of the emissivity's power spe
trum to that of the a

retion rate as afun
tion of radius and frequen
y. In mu
h of the diagram, the ratio is near unity, but thereis a depression in the ratio along a tra
k whose frequen
y falls with in
reasing radius. Thisdip seems to be due to an ex
ess in 
u
tuation power in the a

retion rate; in the 
ase of
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an be 
learly seen at � ' (0:2{0:4)�ISCO (Fig. 6).The origin of this ex
ess 
an be identi�ed by 
omparing its tra
k in radius-frequen
yspa
e with the radial dependen
e of several signi�
ant dynami
al frequen
ies: the orbitalfrequen
y, the verti
al epi
y
li
 frequen
y, and the radial epi
y
li
 frequen
y. As 
an be
learly seen in Figure 7, the radial epi
y
li
 frequen
y|but not the others|follows 
loselythe 
enterline of the dip, suggesting that radial epi
y
li
 modes modulate the a

retion ratewithout giving rise to emission|i.e. the os
illations are either not dissipated signi�
antly,not dissipated lo
ally, or both. A similar feature in the power spe
trum of radial velo
ityas a fun
tion of radius was noted by Reynolds & Miller (2009) in their data from a pseudo-Newtonian global disk simulation. The a

retion rate also has more 
u
tuation power thanthe emissivity for r > rISCO and � ' 0:3�ISCO. We do not understand the origin of this ex
ess.The net result of both ex
esses, however, is to make j _̂M j2 a 
atter fun
tion of frequen
y thanjL̂j2 at most radii and also to 
reate deviations from power-law behavior in the lo
al a

retionrate power spe
tra.We next study how 
losely 
u
tuations in L(r) are mirrored in dF=dr. To do so, welook at the ratio R =  R L(r; t)dtR dF (r;t)dr dt!2 ���
dFdr (r; �)���2���L̂(r; �)���2 : (20)This is the ratio of the two normalized power spe
tra as a fun
tion of radius and frequen
y(Fig. 8). We �nd thatR is evenly distributed about unity, with deviations that rarely ex
eeda fa
tor of 2 in either dire
tion. Thus, the emissivity at r predi
ts dF (r)=dr at # = 0 quitewell.We fo
us next on how the individual annular 
ontributions to the 
ux dF=dr sum to thetotal 
ux F (t). One 
lue is given by the fa
t that the fra
tional varian
es of L(r = 3:5M) and_M(r = 3:5M) are rather similar, 0.152 and 0.175, respe
tively, while the fra
tional varian
eof F is rather smaller, 0.029. We now understand that the emissivity follows the variabilityof the a

retion rate (but with 
ertain ex
eptions like those asso
iated with radial epi
y
li
motions) and dF=dr varies like the emissivity. Why, though, does the total 
ux have su
ha small relative varian
e, and how 
an a set of os
illators (disk annuli) with power spe
trathat are � � �1:5 power-laws integrate to have a 
omposite PDS with � ' �2?In the language of Se
tion 2.2, the annuli 
an be thought of as partitions with their ownindividual light 
urves. Sin
e there are a large number of annuli or partitions, Sb > Sa unlessthere is a dramati
ally low degree of phase-
oheren
e between the di�erent radial segments.If all the annuli were perfe
tly 
oherent, � nm = 0 8n;m, P ' Sb and the light 
urve wouldhave a � � �1:5 power-law power spe
trum with a larger varian
e. On the other hand, if
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ompletely in
oherent, the total 
ux power spe
trum would still be apower-law with � � �1:5, but with a smaller varian
e. The only way to steepen the slopeof the spe
trum is for the degree of 
oheren
e to de
line with in
reasing frequen
y.The level of 
oheren
e in the variability of dF=dr is illustrated in Figure 9, wherewe plot  (�; r) over the lower half of our frequen
y range. At almost all radii,  (�; r) isin
oherent in frequen
y (negligible 
orrelation lengths in �), but at �xed frequen
y, there
an be signi�
ant 
oheren
e in radius. The phases are suÆ
iently 
oherent between di�erentannuli that Sb � Sa, but their 
orrelations follow no simple pattern. Di�erent frequen
iesshow di�erent radial 
oheren
e patterns, making it impossible to state that radius r varies
oherently with radius r0; rather, one 
an only say that 
ertain modes at r are 
oherent withthose at r0.The white dashed 
urve in Figure 9 shows the in
ow rate �in
ow as a fun
tion of radius,whi
h we have de�ned to be the mass-weighted mean radial velo
ity of bound materialdivided by the lo
al radial 
oordinate:�in
owr = Rbound d� d� dtp�g�urRbound d� d� dtp�g� : (21)A 
uid element is 
onsidered bound if hut > �1, and h is the 
uid element's spe
i�
 enthalpy.The time integral is performed over our standard epo
h of t = [7000M; 15000M ℄. For 7M �<r �< 20M , we �nd that �in
ow(r) ' [28Torb(r)℄�1. At smaller radii, the in
ow a

eleratesuntil near the ISCO and in the plunging region �in
ow(r) � 
K . Regions to the left ofthis 
urve are 
learly more 
oherent than those to the right. That this should be so is nottoo surprising, given the ultimate dependen
e of energy release on mass in
ow. Indeed,Lyubarskii (1997) proposed that the inner disk's low frequen
y variability 
an be entirelyexplained by variations spawned at larger radii (by 
u
tuations in the stress to pressure ratio)that are then adve
ted inward with the a

retion 
ow. What is demonstrated in this phasepi
ture is that 
u
tuations lower than the lo
al in
ow rate do indeed propagate 
oherentlyinward, whatever their initial sour
e. However, over mu
h of the range of frequen
ies studiedhere, this 
riterion 
an be satis�ed only near the ISCO and in the plunging region itself. Atthese higher frequen
ies (whi
h, as we shall see in the next se
tion, are often the obje
t ofmost observational study), no su
h regular propagation pattern 
an be dis
erned.Returning to the question of why the power spe
trum of the total 
ux is steeper thanthat of the 
ux radiated by individual annuli, we now see that this 
an be explained by thediminution of the 
oherent radial range with in
reasing frequen
y shown in Figure 9.
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al
ulation for the �rst time 
orre
tly a

ounts for time delays while ray-tra
ing 3DGRMHD simulation data. We would therefore like to quantify how our results are a�e
tedby in
lusion of this e�e
t. The light 
urves and power spe
tra from 
al
ulations with andwithout time delays are shown in Figure 10. The light 
urves are identi
al ex
ept that thetime delay 
al
ulation shows slightly less short times
ale variation. This fa
t is illustratedmore 
learly in the power spe
tra panel of this �gure, whi
h 
learly shows that the 
u
tuationpower at high frequen
ies is diminished when one in
ludes time delays.This 
ontrast is easily understood. Delay e�e
ts 
an diminish 
oheren
e in the re
eivedsignal when a region whose light 
rossing time is �t varies 
oherently on times
ales shorterthan �t. On the other hand, enhan
ement of 
oheren
e by delay e�e
ts would requireremarkable 
ontrivan
e be
ause spatial and temporal 
u
tuations in the turbulen
e wouldhave to be 
orrelated with the ray traje
tories for parti
ular observers. Consequently, photontime delays in general de
rease the 
u
tuation power. The depression of the 
u
tuation poweris 
on�ned to the highest frequen
ies be
ause maintenan
e of emissivity 
oheren
e requires a
oordinating signal propagating a
ross the region, but all signals, whether 
onveyed in bulk
uid motion or by some wave mode, are limited to traveling no faster than 
. It followsthat, for light travel time e�e
ts to suppress variability, the 
oordinating signals must berelativisti
. In the 
ontext of an a

retion 
ow, relativisti
 signals are largely 
on�ned tothe innermost regions, whi
h dominate the generation of high frequen
y 
u
tuations.Be
ause the time delay e�e
t depends on the light's path through the material and thelo
al velo
ity of the 
uid, one expe
ts it to depend on # and _m. We 
hara
terize its trendover parameter spa
e in Figure 11, where the di�eren
e in power-law exponents betweenthe 
al
ulation with time delays and that without time delays is plotted. In all 
ases, thetime delay 
al
ulation yields a steeper PDS. The 
ontrast depends most strongly on a

retionrate, in the sense that it diminishes as the disk be
omes more opaque; this trend is 
onsistentwith the observation that as _m in
reases, the inner portion of the disk be
omes progressivelymore obs
ured and 
ontributes less to the power spe
trum. Larger # produ
es slightly largerdeviations between the two methods. As the in
lination angle in
reases, photon rays be
omemore nearly parallel to the disk's orbital velo
ity. For those 
uid elements with relativisti
velo
ities, the result is that 
uid elements' worldlines move 
loser to the light
one, leadingto somewhat greater 
oheren
e of emissivity along the rays.
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omputational resour
es, we assumed in our simulation that the disk isperiodi
 in � on intervals equal to �=2. Any modes longer than this are not in
luded in our
al
ulation, and the symmetry 
ondition arti�
ially gives rise to 
orrelations at this s
ale.The question then arises: are the absent modes and arti�
ial symmetry important to ourpredi
tion?Even though we 
annot rigorously evaluate the 
onstraint's rami�
ations without re-peating our analysis for a run on the entire domain, some insight might 
ome from a similarsimulation that used the full azimuthal extent (S
hnittman et al. 2006). Their 
al
ulationused a numeri
al 
ode that inadvertently preserves near-
onstant aspe
t ratio by failing to
apture all dissipation as heat (De Villiers & Hawley 2003). Even though their numeri
alte
hniques were di�erent and no expli
it 
ooling was used, our 
al
ulations share nearlyidenti
al initial 
onditions (besides the full azimuthal extent) and yield similar disk thi
k-nesses. Sin
e the disk's thi
kness di
tates the poloidal size of turbulent eddies in the bulk,we may expe
t that the 
hara
teristi
s of their 
orrelations in � will be appli
able to oursystem. They found that the surfa
e density's dominant azimuthal 
orrelation lengths
aleis approximately 0:4�, suggesting that our grid may be large enough to in
lude the mostimportant modes.To quantify the systemati
 e�e
t of the �=2 periodi
ity, we 
an employ the partitionformalism previously introdu
ed. For the purpose of this dis
ussion, it is 
onvenient tolabel the quadrants by their panel labels in Figure 1, i.e., a, b, 
, and d. The quadrantsare distinguished by the sign of their mean line-of-sight velo
ity (re
eding or approa
hing)and their position (front or ba
k). Quadrants a and 
 are approa
hing, whereas b and dare re
eding; quadrants a and b are in ba
k of the bla
k hole, whereas 
 and d are in front.Be
ause relativisti
 e�e
ts dominate obs
uration e�e
ts in determining the 
hara
ters of theirlight 
urves, it is easiest to think of the system in the opti
ally thin limit. If only spe
ialrelativisti
 e�e
ts applied, the two re
eding quadrants would produ
e identi
al light 
urves,as would the two approa
hing quadrants. However, general relativisti
 frame-dragging andlight de
e
tion 
ompli
ate the story. For example, light in a parti
ular dire
tion in the 
uidframe 
an be wrapped around the bla
k hole and es
ape at a 
ompletely di�erent angle.Although the de
e
tion angle is large only very near the bla
k hole, most of the light isprodu
ed at these same radii, so it 
an be a very important e�e
t. For instan
e, looking atFigure 1 we �nd that the most intense part of quadrant b is lo
ated on the opposite side ofthe bla
k hole in the image plane be
ause the brightest light|that whi
h is emitted alongthe orbital velo
ity|has been bent around the bla
k hole and fo
used toward the observer.This phenomenon means that quadrant b is more like an \approa
hing" quadrant than a
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eding one.With these points in mind, we 
an now explain what 
ontrols the distin
tions in 
uxand power spe
trum between the di�erent quadrants. For fa
e-on views, they all 
ontributeidenti
ally to the light 
urve; as the viewing angle moves o�-axis, spe
ial relativisti
 beamingand boosting enhan
es the approa
hing sides, while general relativisti
 light bending andframe-dragging enhan
e the ba
k sides. The result is that over most of _m{# parameterspa
e, quadrant a is the brightest (both approa
hing and in ba
k of the bla
k hole), d is thefaintest (both re
eding and in front), and b and 
 are similar to one another (b is re
eding butin ba
k; 
 is approa
hing but in front). The maximum 
ux 
ontrast between the brightestand dimmest quadrants never ex
eeds a fa
tor of � 5. The slopes of their power spe
trafollow the same trend seen in 
ux: �a �> �b ' �
 > �d on average, with no spe
tral slopefalling outside the range �2:4 � � � �1:8. However, relative to quadrant 
, the quadrantb be
omes brighter and its PDS 
atter as # in
reases. In the summed light 
urve, the
ontrasting e�e
ts largely 
an
el one another, so that the spe
tral slope of the 
ompositePDS 
an be des
ribed by a simple average of the quadrants' individual power-law exponents.In our 
al
ulation, the quadrants are pre
isely 
oherent at all frequen
ies when viewedexa
tly fa
e-on. As the in
lination angle grows, they begin to be
ome in
oherent at thehighest frequen
ies, but even for # = �=2, the range of in
oherent frequen
ies is still quitelimited. The reason for this behavior is that our symmetry 
ondition makes their emissivitypre
isely 
oherent, so su
h in
oheren
e as exists is entirely due to time-delay e�e
ts; as justdis
ussed, they are small ex
ept at the highest frequen
ies. Thus, if the absolute powerspe
trum from a single quadrant (before Doppler adjustments and obs
uration e�e
ts) isA2(�), our total power spe
trum is 16A2(�) when viewed on-axis, and when viewed o�-axishas essentially identi
al power at low frequen
ies, but slightly less at high.By 
ontrast, in a full 2� simulation we expe
t that the emissivities of the quadrantswould have very similar power spe
tra to the emissivity we 
al
ulate, but be 
ompletelyin
oherent if azimuthal 
orrelations extend only over angles ' 0:4�. The same repertory ofrelativisti
 e�e
ts, both spe
ial and general, will still apply, but we expe
t that they willsimilarly 
an
el in sum. Thus, a total 
ux power spe
trum ' 4A2(�) should result, as onlythe Sa term 
ontributes. In other words, if this reasoning holds, the shape of the powerspe
trum observed from a full 2� disk would be quite similar to what we 
ompute, but itsamplitude would be lower by about a fa
tor of 4.



{ 20 {4. Dis
ussion and Con
lusionIn this paper, we have presented a new, more physi
al method for estimating the tem-poral variability of radiation from the opti
ally thin (\
oronal") regions of 3D GRMHDsimulations. For the purpose of investigating variability, it is ne
essary at this stage to sep-arate opti
ally thin regions from opti
ally thi
k be
ause present-day global disk simulation
odes do not have the 
apa
ity to solve the transfer problem simultaneously with the dynam-i
s, and di�usion through opti
ally thi
k regions materially alters the 
hara
ter of variability.The key improvement over previous 
al
ulations is the use of data from an energy-
onserving
ode with pre
ise 
ontrol of the disk's thermodynami
s. In addition, we have shown howto in
lude photon travel time delays, although they have a relatively small impa
t on theresults shown here. We separated 
oronal emission from disk emission by integrating the
uid emissivity from the s
attering photosphere outward; the lo
ation of the photospheremoves in a manner 
ontrolled by the nominal a

retion rate in Eddington units, _m. Be
auseour density data|whi
h determines the opti
al depth|was written only every 20M in timeover a period of 8000M , we were 
onstrained to explore the disk's power spe
trum only overthe frequen
y range � 2 [3:5� 10�3; 0:7℄ �ISCO.We found that the power spe
trum of the observed 
ux's 
u
tuations in this frequen
yband is des
ribed well by a featureless power-law with index � � �2 for essentially allopti
al depths (or, in this formalism, a

retion rates) and in
lination angles. Although mostof the 
u
tuation power has its physi
al origin in a

retion rate 
u
tuations, the slope ofits power spe
trum is steeper by ' 1 than the slope of the a

retion rate's power spe
trum.Two separate e�e
ts 
ombine to 
reate this steepening: there is high frequen
y power inthe a

retion rate due to radial epi
y
li
 motions that do not 
ontribute to variations in theemissivity; and the radial 
oheren
e of di�erent frequen
y modes de
lines with in
reasingfrequen
y. Thus, the power spe
trum of a

retion rate 
u
tuations is not a good proxyfor 
u
tuations in the 
oronal light. Be
ause photon di�usion damping of high-frequen
yemissivity 
u
tuations will likely steepen the power spe
trum of the thermal luminosity, weexpe
t that the same will be true for the light 
urve of the thermal 
omponent.Relativisti
 beaming and boosting 
ause the varian
e of the light 
urve to in
rease within
lination angle, but do not materially 
hange the shape of the power spe
trum. The reasonfor this perhaps 
ounter-intuitive result is that Doppler e�e
ts 
atten the power spe
trum ofthe approa
hing segment of the disk and steepen the power spe
trum of the re
eding segmentso that the two 
hanges 
ompensate for one another.Time-delay e�e
ts steepen the observed power spe
trum at the highest frequen
ies. Ifwe had saved data from this simulation at intervals shorter than 20M , we expe
t that thise�e
t would have been in
reasingly important at the higher frequen
ies that would then have
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essible. For this reason, in any future work using simulation data to predi
t light
urves on short times
ales, we strongly en
ourage proper a

ounting for photon travel times.Our results span the frequen
y range � 2:5Hz� 500Hz if s
aled to a M = 10M� bla
khole and � 2:5� 10�7Hz� 5� 10�5Hz for a M = 108M� bla
k hole. Low frequen
y QPOs,whi
h generally o

ur in GBHs at � 1 Hz, would therefore be at best only marginallydete
table in our data. High frequen
y QPOs, whi
h are sometimes seen at � 200{300 Hz,might in prin
iple have appeared, but we see no eviden
e for any. On the other hand,they appear in real bla
k hole systems only in asso
iation with the transition to the steeppower law state. Although our simulation 
ode very a

urately 
onserves energy, the 
oolingfun
tion we employ is no more than a toy-model. A more 
omplete des
ription of radiative
ooling will be ne
essary to understand spe
tral state transitions, and that might be aprerequisite for understanding high frequen
y QPOs as well.Our opti
ally thin limit ( _m = 0:001) phenomenologi
ally resembles the hard state ofGala
ti
 bla
k hole binaries in the sense that our de�nition of \
oronal" eliminates anyopti
ally-thi
k thermal disk in the inner part of the a

retion 
ow. Intriguingly, the power-law slope that we 
onsistently �nd (� ' �2) is 
rudely 
onsistent with the mean slope ofthe power spe
trum measured in Cyg X-1 in the range 1{500 Hz: steepening from ' �1:7to ' �2:4 Revnivtsev et al. (2000).For higher a

retion rates, our 
orona is restri
ted to the outer layers of the 
ow, more inkeeping with what is often imagined for AGN. A power-law slope ' �2 is also very roughly
onsistent with observations of these obje
ts. For example, Markowitz (2009) shows that theslope of the power spe
trum in IC 4329A steepens from ' �1 to ' �2 a
ross the frequen
yrange 10�8{10�4 Hz. Similarly, Markowitz et al. (2007) �nd that the power spe
trum ofMrk 766 steepens from ' �1:5 to ' �3 from ' 3 � 10�5 Hz to ' 10�3 Hz. In this latter
ase, Markowitz et al. estimate that the 
entral bla
k hole mass may be only � 106{107M�,whi
h would pla
e our simulated frequen
y range roughly 
oin
ident with the observed band.As already mentioned, the de
rease in radial 
oheren
e length with in
reasing frequen
ysteepens the power spe
trum of the aggregate light 
urve relative to the power spe
trum ofthe lo
al emissivity. In our very approximate treatment, we des
ribed the result in terms ofa new, steeper power-law. A more 
areful and 
omplete treatment might improve upon thisdes
ription. In parti
ular, the fa
tor that 
ontrols the radial 
oheren
e length is whetherthe 
u
tuation frequen
y is larger or smaller than the lo
al in
ow rate. It is the outwardde
rease of the in
ow rate that leads to higher power at lower frequen
ies by stret
hing therange of radial 
oheren
e. However, at suÆ
iently low frequen
ies, greater radial 
oheren
edoes not add appre
iably to the power spe
trum be
ause material at larger radius does not
ontribute mu
h to the luminosity. At frequen
ies lower than the in
ow rate at the radius
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h most of the light is emitted, the slope of the 
omposite 
ux power spe
trumshould therefore mat
h the slope of the emissivity power spe
trum. One might then expe
t asmooth roll-o� from the slope of the emissivity power spe
trum at these very low frequen
iesto a steeper slope at high frequen
ies, similar to what is observed in the hard states of GBHsand in AGN. In a simulation, the lowest rea
hable frequen
y is the inverse of the duration;unfortunately, the radius within whi
h our simulation rea
hed in
ow equilibrium en
losedonly a little more than half the luminosity, so we did not rea
h low enough frequen
ies tosee the 
hange in slope.One should also be aware of several other 
aveats in evaluating these 
omparisons withobservations. First, dissipation in magneti
ally-dominated plasmas is thought to entail par-ti
le a

eleration a
ross sho
ks or at re
onne
tion sites. These pro
esses 
an be mu
h morerapid than the orbital times
ale, while the inverse Compton 
ooling rate in units of 
K is� (mp=me)(Ls=LE)�1(r=M)�1=2, for seed photon luminosity Ls. Thus, when there is signi�-
ant thermal disk radiation, the inverse Compton 
ooling rate 
an likewise be mu
h qui
kerthan the orbital frequen
y. Be
ause our 
ooling fun
tion has a 
hara
teristi
 rate � 
K , itmay underestimate high frequen
y variability. Se
ond, our model fo
uses on the total 
oronalluminosity, whi
h is likely dominated by photons at energies an order of magnitude higherthan those generally studied in variability observations. If the power spe
trum 
hanges withphoton energy (and there are some hints of this: Markowitz et al. (2007)), these may not bethe appropriate 
omparisons to make. Third, our simulation did not distinguish the ther-modynami
 properties of the disk body and the 
orona. It is possible that a more 
ompletetreatment of their thermal 
ontrasts might alter the results.In 
on
lusion, we have presented a radiative 
ooling model, based dire
tly on simulationsof 3D MHD turbulen
e in general relativity, that predi
ts the power spe
tra of 
u
tuationsin hard X-ray 
ux observed from AGN and GBHs. The 
al
ulation used a new ray-tra
ingpro
edure for 
orre
tly tra
king the propagation of light through time and spa
e within thetime-dependent 3D GRMHD simulation data set. The spe
tral slope found from our model|' �2, signi�
antly steeper than the slope of the a

retion rate power spe
trum, dependsonly weakly on the in
lination and average a

retion rate of the disk. Future simulationswith more 
omplete physi
s and a more 
omplete traversal of parameter spa
e will shedfurther light on this subje
t.This work was supported by NSF grant AST-0507455 (JHK). We thank Charles Gam-mie for his illuminating input regarding eÆ
ient bookkeeping algorithms for the time delay
al
ulation. The 
omputer resour
es of the Homewood High Performan
e Computer Clusterat Johns Hopkins University were used for our 
al
ulations.
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Fig. 1.| (a-d) Snapshots at|respe
tively|' = f�; �=2; 3�=2; 0g. Ea
h image was taken at# = 53Æ and t = 9000M with _m = 0:01. The axes mark the image's verti
al and horizontalextent in the image plane in units of M . (Far Right) Logarithmi
 
olor map used to makethe images. The intensity is normalized to the maximum intensity of the 
omposite imageshown in Figure 2.



{ 26 {

Fig. 2.| (Left) Composite of the snapshots shown in Figure 1. (Right) Logarithmi
 
olormap used for the image. The maximum intensity in the map has value unity.
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Fig. 3.| (Left) Normalized light 
urves (solid 
urves) for _m = 0:01 and all values of #. Thelight 
urves and their mean values (dashed 
urves) have been shifted verti
ally by in
rementalfa
tors of two for 
larity. (Right) Normalized power spe
tra of these light 
urves 
omparedto their best power-law �ts (dashed 
urves). The power spe
tra are separated by in
rementalfa
tors of 100. In both plots, the 
urves are ordered bottom-to-top in in
reasing order of #.
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Fig. 4.| (Left) Normalized light 
urves (solid 
urves) for # = 29Æ and all values of _m. Thelight 
urves and their mean values (dashed 
urves) have been shifted verti
ally by in
rementalfa
tors of two for 
larity. (Right) Normalized power spe
tra of these light 
urves 
omparedto their best power-law �ts (dashed 
urves). The power spe
tra are separated by in
rementalfa
tors of 100. In both plots, the 
urves are ordered bottom-to-top in in
reasing order of _m.
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Fig. 5.| Exponents � of the best power-law �ts to the power spe
tra of the light 
urvesas fun
tions of _m (horizontal axis) and in
lination angle (verti
al axis). The departuresfrom � � �2 in the upper-right-hand 
orner of the plot are 
aused by the disk's self-obs
uration. The bla
k 
urves represent 
ontours of Ro. From bottom to top, Ro(#; _m) =frISCO; 3:5M; 6M; 12Mg.
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Fig. 6.| (Left) Total 
ux F (t) observed at # = 5Æ for _m = 0:001 (solid bla
k 
urve)
ompared to the a

retion rate _M (dotted blue 
urve) at r = 3:5M and emissivity L atr = 3:5M (dashed red 
urve). All rates are normalized to their time averages. (Right)Power spe
tra of these rates and their best-�t power-laws. The values of the best-�t power-law exponents are � _M = �0:9, �L = �1:2, and �F = �2:1.
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Fig. 7.| Ratio of the emissivity's normalized power spe
trum to the a

retion rate's normal-ized power spe
trum plotted as a fun
tion of radius and frequen
y. Ea
h power spe
trum wassmoothed over nine frequen
y bins before the ratio was taken in order to display trends inthe data more 
learly. Bla
k 
urves show the orbital frequen
y (solid 
urve), radial epi
y
li
frequen
y (dashed 
urve), and verti
al epi
y
li
 frequen
y (dotted 
urve).
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Fig. 8.| Ratio of the normalized power spe
trum of dF=dr to the normalized power spe
-trum of the emissivity as a fun
tion of radius and frequen
y. Ea
h power spe
trum wassmoothed over nine frequen
y bins before the ratio was taken in order to display trends inthe data more 
learly.
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Fig. 9.| (Left) Phase  (�; r) of dF=dr 
u
tuations when seen fa
e-on (# = 5Æ) for _m =0:001. Note that we deviate from prior �gure layouts and use a linear frequen
y s
ale here inorder to resolve small-s
ale features. In addition, we show only the lower half of our frequen
yrange. The dashed 
urve is the lo
al in
ow rate �in
ow. (Right) The linear, periodi
 
olormap used to generate this �gure.
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Fig. 10.| (Left) Normalized light 
urves obtained from the 
al
ulation ignoring time delaye�e
ts (dotted 
urve) and taking them into a

ount (solid 
urve). (Right) Normalized powerspe
tra of these light 
urves 
ompared to their best power-law �ts; the dashed line representsthe best �t to the data with time delay e�e
ts, the dash-dot to the data in whi
h time delayswere ignored. Both light 
urves are for # = 29Æ and _m = 0:01.
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Fig. 11.| Di�eren
e between the power-law exponents � from the 
al
ulation withouttime delays to that with time delays as a fun
tion of _m (horizontal axis) and # (ver-ti
al axis). The 
ases in the upper-righthand 
orner of the plot are heavily obs
ured.The bla
k 
ontour 
urves there represent|respe
tively|from bottom to top Ro(#; _m) =frISCO; 3:5M; 6M; 12Mg.


