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In this paper we evolve magnetized and unmagnetized circumbinary accretion disks around supermassive
black hole binaries in the relativistic regime. We use a post-Newtonian expansion to construct an analytical
spacetime and determine how the order of the post-Newtonian (PN) expansion affects the dynamics of the
gas. We find very small differences in the late-time bulk dynamics of nonmagnetized hydrodynamic
evolutions between the two spacetimes down to separations of approximately 40GM /c*> where M is the total
mass of the binary. For smaller separations, the differences due to PN order become comparable to differences
caused by using initial data further from equilibrium. For magnetized gas, magnetohydrodynamic stresses,
which drives the accretion dynamics, tends to mask all higher order PN effects even at separations of
20GM/c?, leading to essentially the same observed electromagnetic luminosity. This implies that our
calculations of the electromagnetic signal may be robust down to small binary separations. Our investigation
is the first to demonstrate how the level of PN accuracy affects a circumbinary disk’s evolution and informs us
of the range in separation within which to trust the PN approximation for this kind of study. We also address

the influence the initial conditions and binary separation have on simulation predictions.
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I. INTRODUCTION

Supermassive black holes (SMBHs) in the nuclei of
galaxies are understood to play a key role in the con-
struction of galaxies, as evidenced by the strong correla-
tions between their masses and their host galaxies’ stellar
bulge masses and velocity dispersions [1-6].

Because today’s galaxies are generally thought to have
been assembled from mergers of smaller galaxies, SMBH
binaries may be a common occurrence in the nuclei of the
merged galaxies [7-9]. Subsequent to the galactic merger,
dynamical friction from dark matter and baryonic matter
(e.g., stars and/or gas) should bring the SMBHs close to the
center of mass of the merged galaxy, where a variety of
angular momentum loss mechanisms may bring them still
closer together [10]. Once the orbital separation shrinks to
<1000r, (where r, = GM/c? and M is the mass of the
binary), gravitational radiation drives the orbit of the binary
which rapidly inspirals down to merger.

Despite relatively few observations of SMBH mergers to
date [11,12], we know that the rate of these events should
be at least a few per year. Programs such as the Panoramic
Survey Telescope and Rapid Response System, which is
already in operation, and the planned Large Synoptic
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Survey Telescope will be able to search for these events
using electromagnetic (EM) signals. Similarly, pulsar tim-
ing arrays can probe for these events in gravitational waves
(GW). In the long term, EM signatures for SMBH mergers
will also help us pinpoint GW sources from future space
missions such as the European New GW Observatory, also
known as eLISA [13-15], determine the redshift luminosity
distance relationship to large redshifts and can be used to
constrain GW parameter inference. For all these reasons, it
is therefore important to provide accurate predictions of the
EM emission of SMBH mergers in the relativistic regime.

Modeling the gas dynamics near merging SMBHs can be
extremely challenging. Hydrodynamic and magnetohydro-
dynamic (MHD) simulations of accretion disks around
SMBH binary systems have been carried out in the
Newtonian regime [16-23] when the binary is well sep-
arated and in the late-inspiral and merger phase [20,24-30].
However, until the work of Noble et al. [18], the inspiral
regime remained unexplored.

Noble et al. [18] introduced the idea of using an
analytical spacetime of an inspiralling black-hole binary
using post-Newtonian approximations to solve the field
equations of general relativity [31]. This allowed for
simulations of disks for more than a hundred orbits using
the HARM3D MHD code developed by Noble [32,33], far
longer than would be practical with typical full general
relativistic MHD (GRMHD) codes, which solve the MHD
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and gravitational field equations numerically. The HARM3D
code is now a mature code that solves the MHD equations
on arbitrary dynamical spacetimes in arbitrary coordinate
systems. Here we use a spherical grid that is adapted to the
geometry of the disk which is ideal to study circumbinary
accretion dynamics.

In the inspiral regime, far from the sources [r,/r = GM/
(r¢*) < 1], where the black-hole (BH) motion is slow
[(v/c)* < 1], the post-Newtonian (PN) approximation
gives a very good description of spacetime dynamics
[31,34]. The PN approximation is an asymptotic series
in powers of these small quantities, characterized by the
order to which it is taken [e.g., 3PN means up to terms
~(r,/r)*]. The PN metric takes energy loss from the binary
into account, accurately modeling both the energy loss and
the inspiral of the binary.

In a previous paper [18], we used a spacetime model that
is accurate up to 2.5PN order [i.e., including terms up to
~(r,/r)**] but describing the binary orbital evolution to
3.5PN. We showed that circumbinary disks can, in part, track
the inspiral of a SMBH binary even at late stages of
its evolution. The resulting metric was not valid very close
to the BHs, and consequently, we excised any material that
fell within 1.5 binary separations. More recently, we devel-
oped a new technique in which the entire relevant region of
spacetime is covered by a number of individual zones, each
of them based on an analytic approximation appropriate to
its particular conditions [35]. This will allow us to simulate
how the gas falls onto the binary, distribute itself into two
minidisks around each BH, and evolves within these disks.
This will be the subject of a separate upcoming paper.

In this paper, our goal is to explore the region of validity
of the PN metric, where higher order PN corrections
become important, and where the PN spacetime needs to
be supplanted by a numerical one. Our approach is based
on using approximations where they are appropriate in
order to employ the most computationally intensive meth-
ods only on the domains in which they are essential.

Even though our spacetime metric is able to cover the full
simulation domain, in this project, for simplicity, we avoid
evolving the gas in the neighborhood of the BHs, and thus
excise a spherical domain which includes the binary from
our calculation. We follow the same excision procedure as
was used before in [18] and excise the innermost 1.5 binary
separations of the domain. Indeed, in order to include the
BHs in the computational domain while keeping the overall
problem size at a practical level, one would need to introduce
a new, spherical-like, nonuniform coordinate system [36].

To quantify how the PN order of accuracy affects the
evolutions of nonmagnetized and magnetized gas, we
perform here a sequence of inviscid hydrodynamic evolu-
tions of nearly identical disks using Newtonian, 1PN, and
2.5PN order metrics at separations from 100r, to as small
as 15r,. Here we will examine both the transient behavior
of the disk (which is very sensitive to the PN order), the

PHYSICAL REVIEW D 91, 024034 (2015)

quasiequilibrium state of nonmagnetized gas (which is less
sensitive), and the quasiequilibrium state of magnetized gas
(which is even less sensitive). Ultimately, we find that the

PN approximation can be used to evolve MHD disks down
to binary BH (BBH) separations as small as 20r, leading to
robust calculations of the observed EM luminosity.

In the rest of this paper, we use the conventions of
Misner, Thorne, and Wheeler [37] for the spacetime metric
throughout. We use the Greek letters (a, f3, - --) to denote
spacetime indices, and Latin letters (i, j,--) to denote
spatial indices. The metric is denoted g,, and it has
signature (—, +, +, +). We use the geometric unit system,
where G = c¢ =1, with the useful conversion factor
IMg = 1.477 km = 4.926 x 1076 s.

II. SIMULATION DETAILS

A. Quasiequilibrium initial data
and spacetime treatment

Our time-dependent metric does not admit any stationary
disk solutions. However, far from the binary, where the gas
time scale is much longer than the binary orbital period,
we expect the disk to behave as if it were evolving on an
effectively ¢-averaged spacetime. If we hold the binary
separation constant, this ¢-averaged metric is stationary
and therefore admits stationary disk configurations as well.
We therefore generate our quasiequilibrium initial data by
finding stationary disks about a ¢-averaged spacetime. We
note that this ¢-averaged spacetime is only used to generate
initial disk configurations, not for subsequent evolutions.
For details on this procedure, we refer the reader to
Appendix A of [18]. Our procedure for generating the
initial disk configuration assumes that all off-diagonal
components (except for g,,) vanish. In practice, these
are very small, but become larger as the binary separation
is reduced. We illustrate this in Fig. 1, where we show for
binary separations of a =20 M and a = 100 M plots of
metric components for both 1PN and 2.5PN metrics, as
well as the relative differences between them and the Kerr
metric in Boyer-Lindquist coordinates with the same total
mass. The differences in the g,, component of the 1PN
and 2.5PN metrics can be approximated as differences in
their dipole moments or “spins.” For instance, in Boyer-
Lindquist coordinates, g,4 = 2a,/r for r > M. We find
that the azimuthally averaged 1PN and 2.5PN g,, compo-
nents have the same functional form, but have different
values for the spin parameter a, (at the level of a few
percent). We fit an angle-averaged PN metric to this
formula at our grid’s outermost radius to arrive at a spin
parameter a, for the given PN metric; this parameter is then
used to evaluate the Boyer-Lindquist form of the metric that
we ultimately use for comparison purposes.

For each separation, we make sure that disk solutions
have the same scale height, thus keeping the disks as
similar as possible.
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FIG. 1 (color online).
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Covariant metric components of the time-averaged metric used for constructing disk initial data, for a = 20 M

(left column) and @ = 100 M (right column) binary separations, and the 1PN metric (top row) and 2.5PN metric (middle row).
The relative differences (bottom row) are shown between the 2.5PN metric and the 1PN metric (solid lines), the 2.5PN metric and its
“closest” Kerr solution metric (dots), and the 1PN metric and its closest Kerr solution metric (dashes). Note that all off-diagonal
components, except for g,4, are very small. This is the crucial ingredient for our disk initial data construction procedure. Here, the
numerical indices {0, 1, 2,3} refer to the coordinates {z, r, 6, ¢}, respectively.

B. Evolution equations

We solve the MHD equations with the HARM3D
code [33]. As in [18], we assume that the gas does not
self-gravitate and alter the spacetime dynamics. We therefore
need only solve the GRMHD equations on a specified
background spacetime, g, (x*).

The equations of motion originate from the local con-
servation of baryon number density, the local conservation

of stress energy, and the induction equations from
Maxwell’s equations (please see [33] for more details).
They take the form of a set of conservation laws:

9,U(P) = —0,F(P) + S(P) (2.1)

where U is a vector of “conserved” variables, F! are the
fluxes, and S is a vector of source terms. Explicitly, these are
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U(P) = \/=glpu' . T', + pu', T';, B|" (2.2)
F(P) = /=glpu' . T', + pu', T}, (b'u* — bFu')]T  (2.3)

S(P) = /=g[0. T%, T, — F,, T, ", = F;,0]T  (2.4)
where ¢ is the determinant of the metric, F‘MK are the

Christoffel symbols, B* = *F¥' /\/4zx is our magnetic field
(proportional to the field measured by observers traveling
orthogonal to the spacelike hypersurface), *F* is the
Maxwell tensor, u* is the fluid’s 4-velocity, b* =
L (8", + wu,)B” is the magnetic 4-vector or the magnetic
field projected into the fluid’s comoving frame, and

W =u'/\/—g" is the fluid’s Lorentz factor. The MHD
stress-energy tensor, 7, is defined as

Ty = (ph+ 1617w, + (p + 1617/2)g = bub, (2.5)
where ||b]|*> = b* b, is the magnetic energy density, p is the
gas pressure, p is the rest-mass density, h = 1 + ¢ + p/pis
the specific enthalpy, and e is the specific internal energy.
The accretion flow is cooled to keep it close to a constant
aspect ratio by removing excess heat to a radiation field,
specified here as aradiative flux, 7, = L.u,, with £, being
the fluid-frame cooling rate.

We make use of piecewise parabolic reconstruction of
the primitive variables at each cell interface for calculating
the local Lax-Friedrichs flux [32], and a 3D version of the
FluxCT algorithm is used to impose the solenoidal con-
straint, 8,-\/—_gBi = 0 [38]. The electromotive forces are
calculated midway along each cell edge using piecewise
parabolic interpolation of the fluxes from the induction
equation [36]. A second-order accurate Runge-Kutta
method is used to integrate the equations of motion using
the method of lines once the numerical fluxes are found.
The primitive variables are found from the conserved
variables using the 2D scheme of [39]. Please see [33]
for more details.

III. HYDRODYNAMIC EVOLUTIONS

Before embarking on full 3D MHD explorations, we
performed 2D equatorial evolutions of inviscid hydrody-
namic (nonmagnetized) disks on the background BBH
spacetime for different PN orders. We initialized the disk
using the procedure mentioned in Sec. II (and outlined in
detail in Appendix A of [18]), where we set the aspect ratio
to H/r = 0.1. In order to simplify the subsequent analysis,
we have artificially kept the binary separation fixed at
a/M = 100, 50, 40, 30, 20, 15. We denote the simulations
by hydrolPN_aXX and hydro2.5PN_aXX for the 1PN
and 2.5PN cases, respectively, where XX is the binary
separation in units of M.

For all the 2D simulations presented here, the computa-
tional domain consisted of 320 x 320 cells with an outer
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boundary at R,, = 15a and an inner boundary at
R;, = 0.75a. On top of this computational domain, we
constructed two different types of disk configurations.
For the larger binary separations of «a/M = 100,
a/M = 50, and a/M = 40, we set up the disk such that
its inner edge was located at r;, = 2.5a with the radius of
the pressure maximum at ryp,, = 4.2a, while for a/M <
40 we set these to ri, = 3a and ryp, = Sa, respectively.
Note that for a/M = 40 we performed evolutions with
both configurations.

Here we analyze the effects of PN order on the disk
evolution by examining its influence on the disk’s surface
density, torque density, and the mass enclosed within
specified radii.

A. Torque density

We found that one of the most sensitive measures of
differences in the background spacetime is the torque
density. The disk is torqued by the binary through the
nonaxisymmetric nature of the gravitational potential.
In the Newtonian limit, the time-averaged torque density
takes the form [16]

dT 0P

— = 2ar{ T—), 3.1

=2 (") o
where & is the Newtonian gravitational potential of the

_ [ xy=gavay
NG
over spheres. From this formula, it is immediately apparent
that the more the gravitational potential deviates from
axisymmetry, the greater the corresponding communicated
torque density will be for a given asymmetric (and
correlated) distribution of X. We therefore expect that,
for the same disk configuration, the torque density will
be larger for our 2.5PN runs as the higher order PN terms
give rise to larger asymmetries when the terms become
important.

For completeness, we also write the corresponding
general relativistic torque density formula (which is the
one we actually compute) [40]

binary, and where (X) denotes the average

dT
2 - / G (V49 rdzdd (3.2)
where ¢/ = (0,)".

In Figs. 2 and 3, we plot the time-averaged binary torque
density for our 1PN and 2.5PN simulations for a/M =
100, 50,40 and a/M = 40, 30, 20. Here the average angu-
lar momentum flux is calculated by integrating from orbit
120 to orbit 240, which is safely in the quasisteady state
regime.

In all cases, the binary torque density dT'/dr is strongest
for a £ r <5a and shows a strong correlation with the
Reynolds stresses. Note how in Fig. 2 all curves exhibit
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Same as Fig. 2, but for separations a/M = 40, 30, 20. Recall that the disk was initialized with a different

configuration than that of Fig. 2. Note that the y-axis range of these figures is different, as the finer details of the right-hand side figure

would not be noticeable otherwise.

the same basic decaying oscillatory behavior with very
similar amplitudes, as is expected in the quasi-Newtonian
regime (in the Newtonian limit, all plots would overlap).
The oscillatory pattern observed is a standard feature of
such hydrodynamic evolutions, and is due to the presence
of spiral density waves in the inner disk cavity [16]. We see
that for a/M > 40, the 1PN curves lie on top of each other
at larger radii, which is expected in the Newtonian regime.
The a/M =40 curve has a slightly larger wavelength.
The corresponding 2.5PN curves show a similar behavior
but there is also a noticeable difference in wavelength
between the a/M =100 and a/M =50 curves.
Comparing the 1PN and 2.5PN curves for a/M > 40,
we see that at smaller a/M the 2.5PN curves show a larger
amplitude than the 1PN curves. This latter effect is
relatively small but becomes much stronger at smaller
a/M. In Fig. 3, we show the torque density for a/M =
40,20, 15 with a slightly different disk configuration. With

this new disk configuration, the differences in amplitude
between 1PN and 2.5PN at a/M = 40 are magnified. Most
importantly, the trends in amplitude with decreasing a/M
are completely different between 1PN and 2.5PN. While
IPN shows a decrease in amplitude from a/M = 40 to
a/M =30, 2.5PN shows a strong increase. Note the
relative scales in the figure. At a/M = 20 the 1PN and
2.5PN curves are no longer even qualitatively similar.
It thus appears that one needs to include 2.5PN corrections
to the metric even at separations as large as a/M = 30.

B. Surface density
We define the surface density X as

S(tr ) = / py/=gdz

and X(z,r) will denote the azimuthal average of the
above equation. For later convenience, we define X,

(3.3)
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to be the maximum value for the surface density at
t = 0. This quantity will be useful for normalization
purposes.

In Fig. 4 we show the behavior of the surface density
(in logarithmic units) for various binary separations and
PN orders. These plots give us a picture of how the gap
fills in and how the gas diffuses out of the disk. At
a/M = 50, the rate and amount of gas filling in the gap
and the rate and amount of gas diffusing out of the disk
are essentially identical between 1PN and 2.5PN. Even

«10° a=50, 1PN log;|S/%,|

t/M

)(105 0/220, 1PN 10g10|2/20|

t/M

8 10 12 14
r/a

FIG. 4 (color online).
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at a/M = 20, the final distribution of surface density is
again independent of PN order. Here, however, there is
a considerable lag in the time it takes for gas to start
diffusing out of the disk at 1PN. Interestingly, while the
torque densities for 1PN and 2.5PN are quite different
at a/M =20, the net effect seems to be only to
accelerate the equilibration of the 2.5PN disk—the
resultant quasiequilibrium state of the 1PN and
2.5PN disks are largely unaffected by the differences
in these torques.

X105 a:50, 2.5PN logwl):/zol

t/M

8
r/a

x10° a=20, 2.5PN log;(|Z/%,|

t/M

Color contour of surface density X(z, r), Eq. (3.4) (in logarithmic units) for some simulations. y axis is the

simulation time in units of total mass M and x axis is the coordinate radial distance in units of binary separation a.
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To further evaluate the effects of PN order on the bulk of
the disk, we examine the relative difference between
%(¢,r) and its initial value X(0, r):

g _ X(t,r) —2(0,7)
= = 2200+ 20, 1) (34)

In Fig. 5 we plot this quantity for binary separations of
a=20M and a =30 M, which (for this particular

x10° a=30, 1PN log|0Z /3|

t/M

>(105 a=20, 1PN log10|52 Zl

16}

141

1.2

10}

t/M

0.8
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04}

0.2}

r/a

FIG. 5 (color online).
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measure) are illustrative examples of all simulations per-
formed. The relative change in X is complementary to a plot
of the X itself since it better illustrates the behavior of the
bulk, rather than the behavior of the inner and outer edges.
The relative change is off scale before and beyond the disk
because the atmosphere was initialized with very little
density. This figure shows how far from equilibrium our
initial data is. Concentrating on the bulk of the disk itself,
we see very little difference between the 1PN and 2.5PN

x10° a=30, 2.5PN log;o|6Z/5|

t/M

12

t/M

r/a

Color contour of (relative difference of) surface density %(z, r), Eq. (3.4) (in logarithmic units) for simulations

hydro1PN_a30, hydro2.5PN_a30, hydrol PN_a20, and hydro2.5PN_a20. y axis is the simulation time in units of total mass M and x
axis is the coordinate radial distance in units of binary separation a.
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lines show the corresponding 2.5PN versions.

disks at a/M = 30. Both the 1PN and 2.5PN disks settle
down to configurations that are very close to their initial
configurations, with the largest deviations near the inner
and outer edges. At a/M =20 some differences are
apparent. The 2.5PN disk is further from its initial
configuration at all radii (but the effect is small) than the
1PN disk, and the 2.5PN disk exhibits decaying oscillatory
modes near the outer edge not present in the 1PN disk.
While we note that these oscillations may be due, in part, to
the construction of the initial data (which assumes zero
off-diagonal terms in the ¢-averaged metric), it seems to us
that the 2.5PN effects during evolution are important for
this measure of the behavior of the disk at a/M ~ 20-30.

We note also that in order to rule out the possibility
that the observed differences between the 1PN and 2.5PN
simulations be due to the accumulation of numerical errors
over time, we have performed higher resolution versions
of simulations hydrolPN_a20 and hydro2.5PN_a20.
See Appendix A for this discussion.

C. Mass enclosed

We close this section with a discussion of how the disk’s
mass flow equilibrium changes over time. Please see Fig. 6
for plots of the time series of the enclosed mass within
spherical volumes of different radii. We begin by noting that
for a Z 50 M no significant difference can be seen between
1PN and 2.5PN evolutions. Evolutions for smaller binary
separations show a different picture, though. Indeed, for all
1PN evolutions, the amount of mass inside small radii
increases monotonically with time, until it saturates at late
times. For the corresponding 2.5PN evolutions with binary
separation a < 40 M, however, the mass enclosed exhibits a
much more rapid growth, followed by a small decay.

One critical thing to note is that while the initial transient
behavior of the disks at smaller separations is quite
different between 1PN and 2.5PN (with 2.5PN equilibrat-
ing noticeably sooner), the quasiequilibrium state for 1PN
and 2.5PN disks is very similar down to separations as
small as a/M = 20. Apparently, 2.5PN seems to destabi-
lize the gas around the gap, allowing it to fall into the binary

15 2.0 2.5 3.0

t/M x10° t/M x10°

Mass (of the gas) enclosed within several radii as functions of time. Full lines show 1PN evolutions while dotted

until pressure inside the gap supports the inner edge of the
disk. The equilibrium state of the disk depends on the gas
inside the gap, therefore a configuration that leads to gas
entering the gap sooner can equilibrate faster.

Thus, it seems that even though the effects from PN
spacetime order are significant for the smaller binary
separations, hydrodynamic effects begin to dominate dur-
ing the late-time stages of these evolutions. Simulations
with lower PN order merely need more time to relax to the
same configuration as their corresponding higher PN order
cases. The apparent conclusion is that PN approximations
do affect the transient of the disk dynamics even at large
separation (a/M = 30) but the bulk properties of the disk
at later times are robust even at a/M = 20.

IV. MHD EVOLUTIONS

We now turn our attention to MHD simulations of
circumbinary accretion disks. Since 3D MHD simulations
are much more computationally costly than (2D) hydro-
dynamic ones, we cannot afford to explore the parameter
space as extensively as in the hydrodynamic case. For our
MHD runs, we have therefore chosen to fix the binary
separation at a = 20M and only vary the PN order.

We prepared three different evolutions: the “benchmark”
2.5PN run (hereafter referred to as MHD2.5PN), a 1PN run
where the disk was initialized with the same specific
angular momentum at r;, as in the MHD2.5PN case
(hereafter referred to as MHDIPN_I), and a 1PN run
where the disk was chosen to have the same aspect ratio
Tpmax as that of the MHD2.5PN case (hereafter referred to
as MHD1PN_H). Because of the differences in the space-
time metric, it is impossible to find a disk with the same
aspect ratio and specific angular momentum in the 1PN
spacetime as was originally used in the 2.5PN spacetime.

For our MHD simulations we used a 3D numerical
grid with 300 x 160 x 400 cells, an outer boundary at
Ry =154 =300 M, and an inner boundary at
R;, = 0.75a = 15 M. The disk was chosen to have its
inner edge located at r;,, = 3a = 60 M with the radius of
the pressure maximum at ryn, = Sa = 100 M. Please see
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Ref. [18] for further details about the disk setup and
parameters used, and Appendix A for a discussion about
our use of the excision procedure and how well our runs
resolve the magnetorotational instability (MRI).

A detailed analysis of quantities and results pertaining to
the MHD2.5PN evolution was already performed in [18], to
where we refer the interested reader. We will therefore not
repeat this extensive analysis, and will focus our discussion
here on the differences between the 1PN and 2.5PN
evolutions. We find that each simulation enters a so-called
“secularly evolving” state at around ¢ = 40,000 M in
which many characteristics of the disk are seen to only
gradually evolve in time; a circumbinary disk is not
expected to be steady as the gravitational torque from
the binary persists to perform work on the gas.

A. Torque

We can see the angular momentum flow of the system in
Fig. 7, where we plot the radial derivatives of time-averaged
angular momentum fluxes integrated on shells. This is
the plot analogous to Fig. 3 for these MHD evolutions.
As expected, several differences stand out when making a
comparison with the purely hydrodynamic evolutions, as in
the hydrodynamic case there is no mechanism to efficiently
transport angular momentum. In this case, we see that the
binary torque density d7/dr is mostly delivered in the a <
r < 2a region. Most of the angular momentum is delivered
in the gap, where the density of the fluid is much lower than
in the disk proper. As in the hydrodynamic case, a strong
correlation with the Reynolds stresses is observed. And
throughout the flow, Maxwell stress (not present in the

0.04 .
0.02
0.00

-0.02

d2/dtd(r/a) [C M a ]

-0.04| -
1 1 1 1 |

1 2 3 4 5
r [o(0)]

FIG. 7 (color online).
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hydrodynamic case) acts to remove angular momentum
from the gas and carry it outward.

More important for our purposes here, though, is noting
that runs MHDIPN_H and MHD2.5PN show hardly any
noticeable difference between them. Thus, for this quantity
(and unlike the corresponding hydrodynamic case), MHD
dynamics seem to dominate over and mask “spacetime”
related effects.

B. Surface density

Figure 8 shows color contour plots of the surface density
in logarithmic units, log,oX(z, r), for both MHDI1PN_H
and MHD2.5PN evolutions. At around r=2.5a we
observe a steady increase in the surface density with time
that eventually plateaus. Unlike the cases of Sec. III B, here
we see there are significant departures from initial con-
ditions as we would expect because of the magnetic field
providing a means of efficient angular momentum transfer.
On the logarithmic scale, however, we see now only minor
differences between the two scenarios. When analyzing
Fig. 9 (which shows line plots of the surface density as a
function of radial distance for fixed time steps), however, it
seems that a distinctive pattern forms in the MHD2.5PN
case, where a distinct local maximum appears at r = 2.5a
after a certain time, and persisting until the end of
the evolution. Such a pattern is not as pronounced in the
MHDIPN_H case. We note, however, that in the
MHDIPN_I1 evolution (which has the same angular
momentum as the MHD2.5PN one), this same pattern is
indeed observed, implying that this difference is likely due
to the differences in the disks’ initial angular momenta.

0.04 | 1

0.02

0.00

-0.02

d%J/dtd(r/a) [G M a ]

-0.04f -

r [o(0)]

Different contributions to the flux of angular momentum through the accretion flow seen in the MHD1PN_H

(left panel) and MHD2.5PN (right panel) runs. Radial derivatives of the angular momentum flux due to shell-integrated Maxwell stress
in the coordinate frame (red lines), the angular momentum flux due to shell-integrated Reynolds stress in the coordinate frame (green
lines), advected angular momentum (gold lines), and net rate of change of angular momentum 9,9,/ (solid black lines). Also shown are
torque densities per unit radius due to the actual binary potential (blue lines) and radiation losses (cyan lines). All quantities are time
averaged over the secularly evolving period. To clarify colors used, note that at » = 4a colors are (from bottom to top): red, green, cyan,

blue, black, gold.
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Color contour of surface density in logarithmic units, log;oX(7, 7). (Left panel) MHDIPN_H evolution.
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FIG. 9 (color online).
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Surface density X(r/a) for fixed time steps, from beginning of the secularly evolving state (blue lines, bottom)

to end of the simulation (red lines, top). The dotted curve shows the initial condition, while the dashed curved shows the average of the
colored curves. (Left panel) MHDIPN_I. (Middle panel) MHD1PN_H. (Right panel) MHD2.5PN.

C. Mass enclosed

In Fig. 10 we have the equivalent of Fig. 6 for our MHD
evolutions, where we see how matter accumulates in the inner
disk over time. For both situations, we see a sharp increase in
the mass enclosed at smaller radii early on in the evolution.
As the initial transient fades away and the disk evolves to a
quasiequilibrium configuration, the mass stabilizes at a
roughly constant value, particularly for large radii.

As was the case for the previous quantities, we see no
noticeable difference between the 1PN and 2.5PN cases.
We therefore find that the differences in the spacetime and
the disks’ initial conditions do not have a large effect on the
rates of achieving a degree of mass inflow equilibrium.

D. Luminosity

As in [18], we employ a local radiative cooling function
to control a disk’s aspect ratio and provide a means to

predict bolometric electromagnetic signatures of circum-
binary flows for a specified disk scale height profile.
Specifically, the cooling function is designed so that the
gas loses heat whenever its entropy rises above the initial
constant entropy of the disk. This way, the integrated
luminosity over time is a record of the total energy
dissipated by the gas. Each disk was initialized to have
approximately the same scale height. Specifically,
MHDIPN_H and MHD2.5PN started with an aspect ratio
of =0.1 within an accuracy less than 1%, while MHD1PN_1
started with a slightly slenderer profile, =0.09. In order to
uncover any photometric predictors for a circumbinary
system, we have analyzed the light curves produced by
the simulations. We estimate the total luminosity of the disk
from the local emissivity (cooling function) via

L(t) = / /=Gd0ddrL u,. (4.1)
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FIG. 10. Mass enclosed within r < (1, 1.5,2,3,4)a (bottom to top, respectively) in logarithmic units for simulations MHD1PN_H

(left panel) and MHD2.5PN (right panel).

This method is approximate because it assumes that the
radiation reaches the observer immediately without any
relativistic redshift or delay (e.g., because of the disk’s
opacity). It remains to be seen if these assumptions are
significant, but there are many reasons to trust our results.
For instance, the largest relativistic effects are expected to
occur immediately near the black holes—a region we excise
from our simulations; our results are therefore useful to
investigate variability from the circumbinary disk and not
from the matter within the gap. Further, including opacity is
expected to weaken the quality factor of any periodic signal
we observe as it will introduce an incoherent delay, so minor
differences in the light curves will likely be obfuscated by
this effect.

When comparing any two simulations involving chaotic
turbulent flows, one never expects them to be able to make
quantitative timestep-to-timestep comparisons if they start
with small differences. We therefore present, temporal
power spectrum [fast Fourier transform, FFT, of L(r)]
from each simulation’s light curve instead of the light
curves themselves. In Fig. 11 we plot the Fourier power
spectrum of L(t) over the latter part of the secularly

evolving period, from ¢ = 60,000 M onward. We find that
each simulation exhibits the same strong periodic signal
found well above the background noise of fluctuations.
As we identified before in [18], it occurs at twice the
beat frequency between the binary’s orbit and the orbit of
the nonaxisymmetric overdensity feature that develops at
r=2.5a. The frequency, Q;, appears at Q; = 1.47Qy;,
for the MHD2.5PN run, and Q; = 1.44Q;, for the two
IPN runs. Variability is seen at the frequency of the
overdensity’s orbit, which we call Q,. The time-averaged
radial coordinate of the overdensity ry,/a =2.56 for
MHD2.5PN and r,, = 2.61 for the 1PN runs, leading
to Q, = 0.26Q;, for MHD2.5PN and Q, = 0.25€;, for
the 1PN runs.

All three simulations see the signal at €, though the
MHD2.5PN run exhibits the clearest peak. On the other
hand, the 1PN runs exhibit more power at £, and Q; £ Q,,
suggesting that the variability in these runs stems more
from the orbital motion of the overdensity and not
the coherent interaction between the overdensity and the
binary. Both 1PN runs demonstrate more power at the
overdensity orbital frequency than at any other frequency,
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FIG. 11 (color online).
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FFT of luminosity for our MHD simulations MHDIPN_1 (left panel)), MHDIPN_H (middle panel),

MHD2.5PN (right panel). Highlighted frequencies include the orbital frequency at time-averaged radius of max(X) = Q; (green line);
Q, = 1.375Qbin (blue dashes); Q; + Q, (blue dots); and the overtones of Q; £ Q, (red dots) and Q, (red dashes). Green, blue and red
lines appear in the leftmost, central and rightmost part of the figure respectively.
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unlike what is seen from MHD2.5PN . This enhancement
at Q, seen in the 1PN runs is unlikely due to greater
low-frequency noise because the 1PN power spectra were
calculated from longer periods of L(¢) data than what was
used for MHD2.5PN’s spectrum. Even though more runs
would be needed for a definitive answer, the disparity in
variability power at Q; and Q, is the most consistent
difference seen in the light curves from 1PN and 2.5PN
simulations.

V. FINAL REMARKS

In this work, we explored how PN order affects the
evolution of nonmagnetized and magnetized gas around
binary black-hole systems. For inviscid hydrodynamics,
and separations a 2 50 M, we found only very small
differences in the gas dynamics between 1PN and 2.5PN
spacetimes. For smaller separations (a < 40 M), there are
noticeable differences in the transient behavior of the disk
between PN orders, but even down to a = 30 M there are
very little differences in the bulk dynamics of the disk. At
separations of a < 20 M, there are noticeable differences in
the bulk dynamics of unmagnetized gas between the 1PN
and 2.5PN spacetimes.

We next looked at full MHD simulations of magnetized
disks at a = 20 M. We performed two MHD simulations
using the 1PN spacetime to compare with the results
obtained from 2.5PN accurate spacetime, published in
[18]. We only observed small differences between all three
MHD simulations in the bulk of the disk, e.g., the
differences between the 1PN and 2.5PN cases are of the
same order of that between the two 1PN runs. This leads us
to conclude that differences between 1PN and 2.5PN are of
the same order of magnitude as differences that one would
find from different initial conditions. This is because the
MHD dynamics, which drives accretion, seems to effec-
tively mask the effects from the high-order PN terms. In all
three MHD runs, we discovered a unique and exciting
periodic EM signature that could be used to both identify
SMBH mergers in the time domain and measure their
mass ratio. This signal is robust down to small binary
separations, such as 20 M, though it is the strongest signal
over the entire frequency range for only the 2.5PN order
simulation. Of course, it remains to be seen if the
quantitative differences are larger than the systematic error
arising from our choice of initial conditions and our choice
to excise the binary. This will require further studies and
simulations that are beyond the scope of this paper.

While the bulk of the disk is largely unaffected by PN
order, the surface density at the inner edge of the disk
shows a more significant lump for 2.5PN than 1PN. These
differences are most likely due to enhanced torque densities
in the 2.5PN metric within the gap. If one is interested in
understanding the physics at the interface between the gap
and the inner edge of the disk, our results suggest that the
2.5PN metric should be used at separations of 20 M and

PHYSICAL REVIEW D 91, 024034 (2015)

smaller. This result is particularly interesting in the context
of a new type of simulation we are exploring, where each
BH resides on the numerical domain. With this new study,
we intend to explore how minidisks form, how the
accreting matter is distributed about the two SMBHs,
and how the orbital dynamics of the BHs is affected by
accretion. The distribution of gas and dissipation of internal
stresses will provide us with the means of tracking when
and where light is radiated in the system and answer
key questions about the accretion dynamics of merging
SMBHE.
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Appendix: NUMERICAL DETAILS

In order to make sure that our results were not an artifact
of numerical errors accumulating with time, we have
repeated runs hydrolPN_a20 and hydro2.5PN_a20 using
480 x 480 cells (instead of our ‘“standard” 320 x 320).
In Fig. 12 we plot the corresponding relative change in X,
since this quantity proved to be quite sensitive to small
changes in configurations. These plots should be matched
against the lower panel of Fig. 5, depicting its lower
resolution counterpart. As can be observed, the figures
are remarkably similar, which gives us confidence that
numerical errors are not masking the results we have found.

Another approximation we make in our nonmagnetized
and magnetized runs is that we excise the spherical region
including the binary’s orbit, out to a coordinate radius of
1.5 binary separations. One may argue that differences in
the two PN spacetimes will put this excision surface at
different proper distances, and so may result in an incon-
sistent setup that ultimately contaminates the numerical
comparisons between runs with different PN accuracies.
As one can see from the relative differences in g,, shown
in Fig. 1, the differences in proper distances beyond the
binary’s orbit are expected to be no more than a few
percent. Further, the authors of [17] have performed a
sequence of Newtonian MHD runs with different excision
radii and found that changes > 10% yield insignificant
differences in results, such as those reported here. Further,
their Newtonian results—specifically the various
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using 480 x 480 cells, in order to test the accuracy of our evolution.

contributions to d?J/dtdr—are remarkably similar to our
2.5PN results, let alone our 1PN results. Hence, we do not
expect that differences in the proper radius of the excision
surface to be a large effect. Whether or not the excision
method is valid at all requires us to repeat our simulations
without any excision. Such calculations would be
extremely expensive to perform in their entirety, but we
hope to investigate this issue with shorter runs and/or
smaller setups in the future.

The principal angular momentum transfer mechanism is
the correlated MHD stress associated with the MRI. It
is therefore critical for simulations hoping to realistically
represent a magnetized turbulent disk to adequately
resolve the fastest growing modes of this instability.
Experience has shown that several conditions should be
met in order for global simulations to sufficiently resolve
the MRI [41,42] and the vertical scale height of the disk
[43]. The MRI resolution benchmarks are given in terms of
quality factors per dimension [Q(!)] which are proportional
to the number of cells per MRI wavelength along the

dimension. Their suggested benchmarks are Q(?) > 10 and
Q%) > 25 [42], which all our MHD simulations meet
everywhere in the disk’s bulk wuntil late times
(t 260,000 M) in the orbiting overdensity region or
“lump.” Further, all our simulations cover the disk’s
vertical scale height with more than 36 cells on average
over the course of each run, which more than satisfies the
suggested target of 32 cells per scale height of [43]. We
emphasize that our new results presented here satisfy these
resolution requirements just as well as our original run,
hence all our MHD results resolve the MRI quite well.
Please see [18] for specific details on how we measure
a run’s MRI resolution criteria. Again, we wish to
emphasize that the only uncertainty in our simulations
meeting the MRI resolution criteria arises at late times
when magnetic flux escapes and/or dissipates within the
overdensity region; at all other times throughout the bulk
of the disk, the criteria are satisfied with great excess. We
will explore flux loss phenomenon in the lump using a
different variety of initial conditions in a future paper.
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