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Theory and Methods

the polar-areal metric:

of baryons and energy):

> Roe-type scheme;
» Marquina flux method;

Figure 5: (left, below) Shown here are two sets of near-critical evolutions of a p,=0.197 star
perturbed by different scalar field pulses. dm ,,,/dr (dm
times in red (green) for the marginally subcritical case and blue (cyan) for the supercritical
ensemble. The two sets differ significantly only at late times. This particular star departs

shortly from its usntable configuration at t=31, then returns at t=59, and departs for good at t=80.
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For our neutron star model, we use spherically-symmetric hydrostatic solutions to Einstein's
equations, known as Tolman-Oppenheimer-Volkoff (TOV) solutions. Initially, we assume
that the fluid follows an isentropic, polytropic equation of state P=K pg while for 20 we
assume a state equation of the form P=(-1) p,€ - We use an adiabatic index of ['=2
which approximates the stiffness of neutron stellar matter. The time-varying metric we use is

ds’=—«(r,t) dt’
The system is evolved by solving the hydrodynamics equations of motion (local conservation

atqk_l_@r(rzafk/a):‘g(qu guv;)\)

while the geometry is calculated via the Hamiltonian constraint and Slicing condition for a(r,t)
and (r , t) , respectively, at every time step. When used, the scalar field equations of
motion we employ are the massless Einstein-Klein-Gordon (EMKG) equations, which are
evolved by a procedure that calculates the updated scalar field functions and metric functions
iteratively after the fluid fields have been updated.

Key features of our High-Resolution Shock-Capturing code are:

» approximate Roe solvers to calculate numerical flux:

> Minmod, MC-limiters slope-limiters used;
» a variable mesh concentrates grid points about the origin and minimizes the effect of
artificial floor or atmosphere that lies exterior to the star;
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We investigate spherically-symmetric, general relativistic systems of collapsing perfect fluid
distributions with primary interest in behavior observed at the threshold of black hole formation.
Unlike other critical phenomena studies that use less realistic sources such as scalar fields and
pressure-less dust, our ability to evolve baryonic matter in the hydrodynamic limit allows us to
investigate how stellar objects can be driven toward the critical threshold. Particularly, we look at
neutron star models that are driven to collapse in hopes of approximating failed supernovae and
other sudden accretion events. The first method we employ to drive a star to collapse involves
imparting the star with an initially in-going velocity profile, while the second one uses a shell of
scalar field that falls onto the star and only interacts with the fluid through its effect on the
spacetime. With the so-called velocity-induced initial data, we observe a phase space of dynamical
scenarios in which both Type I and Type II critical behavior is observed. We observe and
thoroughly study Type II behavior using this mechanism, however, we use the scalar field to
examine Type I behavior. Finally, we see how an arbitrary distribution of scalar field reacts when
in the neighborhood of a perfect fluid solution that has been tuned near the critical threshold.
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their respective time-averaged critical

| solutions (red), and the TOV solutions with
p. equal to the time-averaged p,(r=0,?)
- of their respective critical solutions.

| Figure 7: The top portion shows the Lyapunov
exponents of critical solutions generated from
several initial, stable TOV solutions, which are
| parameterized by P.. On bottom, we show

the differences between the exponents and points
along a fitted line we made to the distribution.
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This work closely follows previous work accomplished by [Shapiro & Teukolsky 1980],
[Gourgoulhon 1992], and [Novak 2001] which all performed numerical experiments in order to
explore the threshold of black hole formation for neutron stars far from equilibrium. If there is a
universal threshold which involves a neutron star of finite mass, then it provides an approximate
lower bound for the mass of a nascent black hole born from failed supernovae and rapid accretion
events.

We give the otherwise static and stable neutron star an 1initial in-going velocity profile,
v(r,t=0), that resembles a cubic polynomial in r with overall amplitude V,,,;,,. By varying
V.nin and the central rest-mass density of the star, P. , we made a phase space of dynamical
outcomes shown in Figure 2. We categorize the outcomes using the following labels:

» Prompt Collapse (PC): entire star collapses to a black hole;
Shock-Bounce-Collapse (SBC): some matter is ejected via a shock before black hole forms;
Shock-Bounce-Dispersal (SBD): shock forms, nearly all matter disperses from origin;
Shock-Bounce-Oscillation (SBO): shock forms, resultant star is "hot" and oscillates;
Oscillation (O): no shock, star oscillates about equilibrium solution;
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Results:
s M.>0.14M _ to form a black hole;
» Type I behavior when V,,;, <045, M->08M
» Type II behavior when Vv, . >0.45, M.<08M

» arbitrarily small black holes can be formed if Vv 1s abitrarily near Type II threshold;

min

Critical phenomena in perfect fluid systems has been extensively studied using in the ultrarelativistic
Choptuik 2000] for I" = 1.4 and by [Novak 2001] for Z = 2. The initial data sets used by Neilsen and
solution, whereas Novak used TOV stars with added inward kinetic energy. Neilsen and Choptuik found

however, found scaling behavior different from that of a 7 =2 ultrarelativistic fluid. Using similar
initial data used by Novak, we find that scaling behavior near the critical point is in fact that expected
from ultrarelativistic studies (Figure 3). The solutions near the threshold also closely resemble those for
a 1 =2 ultrarelativistic fluid.

In(T Joc—2yln(p*—p)

where p=v ., p *= estimate critical value for v, |,
I' = global maximum of the trace of the stress-energy tensor;

Results:
» can form arbitrarily small black holes;
> pear-critical solutions tend toward a continuously self-similar (CSS) solution (Figure 4);
» 1deal-gas near-critical solution tend to ultrarelativistic near-critical solution;
» 1deal-gas critical scaling law closely matches ultrarelativistic critical scaling law;
» scaling behavior independent of initial data prescription, such as the initial TOV solution and
functional form of the velocity profile;

In order to study the Type I behavior of TOV stars, we use a minimally-coupled scalar field to act
as the perturbation mechanism. If the scalar field pulse is not strong enough---e.g. near or below the
threshold of black hole formation---then it merely passes through the star and disperses to infinity.

For near-critical configurations, the gravitational interaction between the two sources drives the star to
oscillate about an unstable, static TOV solution of mass comparable to that of the original star

(Figure 5). Since the central density uniquely parameterizes the TOV solutions, we have found that
the initial central densities of stars are one-to-one with the central densities of their respective nearly-
static critical states (Figure 6). Also, as the initial data is tuned closer to the critical point for a given

star, the longer the star emulates its associated unstable TOV star. If 7 (p_, p) is the proper time
interval during which a star of initial central density o, emulates the unstable solution after being
perturbed by a scalar field of initial amplitude p, then we find that

T(p., plc—[1/w(p,)]|In|p—p*|

where w(p_ ) is the Lyapunov exponent of the unstable, critical solution for a star of initial central
density 2. (Figure 7). It remains to be seen if the Lyapunov exponents calculated numerical here

from our nonlinear evolutions correspond to the exponents of the unstable TOV solutions calculated
using linear perturbation theory.

field (fluid).

Starting from two gaussian profiles of ultrarelativistic fluid and scalar
field, we tune the amplitude of the fluid distribution, T, , about the
threshold of black hole formation. If the scalar field pulse is initially near
the bulk of the fluid, we find that the scalar field grows exponentially
with respect to the self-similar time-coordinate T. Since these are
numerical experiments, we can only tune T, to within machine-precision
of the critical value T, . Hence, our near-critical solutions can only exist
in the critical regime for a finite period AT. For smaller values of the scalar
field amplitude, ¢,,, we find that the near-critical fluid solution behaves in
its expected, CSS, way. As we increase ¢, we find that the global
maximum the scalar field achieves---for solutions closest to the
threshold---increases. Above a certain value of ®,, we find that the scalar
field is amplified sufficiently so as to be the dynamically-dominant source.
For these cases, we find that the fluid still dominates at early times, making
the near-critical evolution during this period appear CSS. At later times,
however, the scalar-field-dominated evolution resembles discretely self- e
similar (DSS) behavior, which is characteristic of the EMKG critical
solution (Figure 9). By measuring the scaling behavior of 7T°
we find that---in fact---the scaling behavior during the period dominated by
the fluid (scalar field) is the same as one would expect without the scalar

This work yields analogous results to those found by Choptuik
[Choptuik 2004] involving EMKG and Yang-Mills fields.
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| Figure 9: Snapshots of dm , ., /dr (red) and dm , /dr
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(Figure 8), maximum of the stress tensor's trace w.r.t. to
the logarithm of (To=Ty") for initial
ultrarelativistc/scalar-field configurations that
lead to the scalar field eventually being the
dominant source. The red (green) line is a
linear fit to that data for which the fluid
(scalar field) 1s dominant.

(green) versus Ln(r) at various times. The times shown in the
~ lower-left corners of the frames are the frames' values of

| -Ln(7*-7), where Tis the central proper time of a snapshot
| and 7* is the estimated accumulation time of the critical

limit where P >> P,. The only studies involving more realistic, ideal-gas fluids were done by [Neilsen and
Choptuik consisted of gaussian density distributions whose amplitudes were tuned to search for the critical

that their ideal-gas scaling behavior matched closely to that for an ultrarelativistic fluid of Z = 1.4. Novak,
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Figure 4: The quantity Amtr'd’p s plotted for the most nearly
critical solutions for the ideal-gas fluid (blue) and the ultrarelativistic
fluid (black). As the ideal-gas solution evolves, P grows and
gradually diminishes the dynamical significance of Po thereby
making the system effectively scale-free. In this limit, the ideal-gas
EOM asymptote to the ultrarelativistic equations.
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By driving neutron stars toward black hole formation, we have
uncovered a rich space of dynamical scenarios which tells where in
parameter space the different types of critical behavior lie. In addition,

| we have presented evidence to support the universality conjecture of
| critical phenomena for perfect fluid systems. Using a scalar field instead

of a ingoing velocity profile, we were able to elucidate the expected
Type I behavior of perfect fluids with an intrinsic length scale. Finally,
we have presented additional evidence of EMKG-field amplification in
the presence of a critical solution.
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