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Abstract

Conservative numerical methods, which take advantage of the conservation-
law nature of the equations of motion to be solved, have been extraordinarily
successful 1n evolving Newtonian and relativistic hydrodynamic systems. Such
methods improve how well discontinuities are resolved while giving high-order
accuracy in smooth regions. Recently, such techniques have been used to study
magnetohydrodynamic flows in relativistic scenarios as well, specifically for
accretion disk and jet evolutions. A major component of relativistic conservative
schemes involves calculating the primitive variables (e.g. the pressure, rest-mass
density and flow velocity) from the conserved variables (e.g. components of the
stress-energy tensor). The problem ultimately amounts to solving five nonlinear
algebraic equations for five unknown primitive variables. If implemented
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Methods and Formulations

Table 1: Description of the 6 different methods for computing P(U).

naively, a method that performs this calculation may be responsible for a large
portion of a code's runtime and numerical error. Also, its robustness typically
decides what region of phase space one can study (e.g. it may only be able to
find solutions for flows with small Lorentz factors). Hence, it 1s critical that the
primitive variables are calculated efficiently, robustly and accurately. We

present six methods for finding the primitive variables, and contrast their
performance with a number of benchmarks. Three new methods developed in
this work are found to improve upon previous schemes in many aspects. These
improved methods will allow us to more accurately and more efficiently evolve

accretion disk models 1in the future with HARM.

Introduction

general form:
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Primitive Variables

S = source functions
T,=(p+p+u- bz)uuuv—l—(p—l-bZ/Z)guv—bubv

N = timelike vector normal to spacelike hypersurfaces

The explicit dependence of U on P 1s given above. Obviously, the last
three equations are trivial mappings, while the first 5 equations
represent the real transformation. The inverse, P(U), of these first 5
equations 1s not known and must be done numerically. Even though
several different methods have been mentioned 1n the literature [1-4],
no quantitative comparisons have been made. We perform such
comparisons between methods similar to the existing ones, and
introduce new, improved schemes in [5]. We also summarize our

The dynamic equations governing ideal MHD systems in GR takes the

The numerical methods we have tested are described below.
The majority of them entail an n-dimensional Newton-Raphson
(NR) method used to find the root of a given set of algebraic
residual functions. The residuals indicate when a given P
yields a satisfactory numerical solution. Table 1 describes the
6 methods. In many of the methods, we have used the
following scalar quantities, derived from projections of
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Using known conserved/primitive variable pairs, we test each method's
accuracy exactly. The survey i1s taken with the following variables and
ranges, which reflect the dynamical range often seen in our accretion disk

For each parameter space point, P is specified and U(P) 1s calculated.

P 1s then offset by a random factor, used as a seed for each method, and a
a resultant P 1s found per method. The accuracy of this result can then be
compared to its known value. Figure 1 shows each method's average
accuracy 1n calculating u over the parameter space, while Fig. 2 displays

measures of each method's efficiency and robustness. One sees that the
2D, 1D and ID; methods all excel in accuracy, rate of convergence and

log (i’ +1)€[0.002,2.9]

rate of success. Also, 2D and IDW both are the fastest methods by far.

1; Sol. Rate /
0.9- (167504 Hz)
0.8 " N_NR/(19.3).
0.7 Failure Rate /
0.6- 0.42
0.5-
0.4-
0.3
0.2-
0.1-
0 | . . . T
2D ID_W 1D*_vA2 1D_vA2 5D Poly

Figure 3: The solution rate (green), average number
of NR iterations (red), failure rate (yellow) of each
method for the parameter space survey.
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8 Our final test sets the best inversion methods against each other 1n a practical simulation: an accretion disk around a rotating black hole. We use Kerr Schild
¥ coordinates, with spin parameter a=0.9375M. Initially, the disk takes the shape of a Fishbone-Moncrief torus, which would be at equilibrium if it were not
for the magnetic field. Its inner radius 1s at r=6M, pressure maximum at r=12M, and outer radius at r=42M (all along the equator) at r=0. The magnetic
field 1s purely poloidal at the beginning, and 1s normalized so that the minimum ratio of gas pressure to magnetic pressure i1s 100. All runs used a resolution
of 256x256 points. Fig. 6 shows snapshots of the logarithm of the rest-mass density when the disk 1s in a steady-state; each snapshot is from a different run

Name Var.' s Methods and Equations References
2D v, W Solve (2) and (4) simultaneously with 2D Newton-Raphson [5,3]
1D, W Substitute (3) for v’ in (4) and solve for W with 1D Newton-Raphson [5]
1D . y’ Solve cubic (2) explicitly for W per Newton-Raphson iteration of (4) for v’ [1,3]

1 D:Z y’ Use Newton-Raphson of (2) for W per Newton-Raphson iteration of (4) for y? [S]
SD P Solve original equations (1) directly using SD Newton-Raphson [2,3]
Poly % Substituting (3) into (4) with I -law state equation — O

=

L

(W®) poly., solve with Laguerre's method [5]

using a different inversion method. Fig. 7 shows the accretion rates from these runs, while Fig. 8 illustrates the efficiency and robustness of each method.

Figure 6: Snapshots of the log
of the density at t=2000GM/c"3
in axisymmetry using different
methods. From left to right:
2D, 1D_W, 1D*_v”2, 5D. The
color map scales from dark blue
(rho=4e-7) to dark red
(rho=0.69).
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The most efficient methods are 2D and 1D . The most robust method 1s the 2D method,
closely followed by the 1D_ and 1 D:; methods. The most accurate methods are the

aforementioned and the 5D method, assuming that the guess for P is close enough to the
solution. Hence, we recommend the 2D method for any conservative relativistic MHD code.
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