Physics A300: Classical Mechanics I

Revised Problem Set 2

Assigned 2002 September 6 Due 2002 September 13

Show your work on all problems! Note that the answers to some problems are in the appendix of Marion & Thornton, but they should only be used to check your work, since the answers themselves are an insufficient solution to the problem.

An Identity Relating the Levi-Civita and Kronecker Delta 1 Symbols (M & T 1-22)

- a) Evaluate the sum $\sum_{k=1}^{3} \varepsilon_{ijk} \varepsilon_{\ell m k}$ (which is actually 81 different sums, each containing three terms) by considering the result for all possible combinations of i, j, ℓ, m , that is:
 - (a) i = j
- **(b)** $i = \ell$ (c) i = m
- (d) $j = \ell$
- (e) j = m (f) $\ell = m$

- (g) $i \neq \ell$ or m (h) $j \neq \ell$ or m. Show that

$$\sum_{k=1}^{3} \varepsilon_{ijk} \varepsilon_{\ell mk} = \delta_{i\ell} \delta_{jm} - \delta_{im} \delta_{j\ell}$$

b) Use the result of part a) to prove

$$\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A} \cdot \vec{C})\vec{B} - (\vec{A} \cdot \vec{B})\vec{C}$$

Circular Motion 2

Consider a particle which moves at uniform speed in a circular trajectory of radius a at angular velocity ω (so that it completes an orbit in a time $2\pi/\omega$). Let the particle move counter-clockwise in the xy-plane so that it crosses the positive y-axis at t=0.

- a) Write the trajectory x(t), y(t) in Cartesian coördinates.
- b) By taking time-derivatives, calculate the velocity $\vec{v}(t) = \dot{\vec{r}}(t)$ and acceleration $\vec{a}(t) = \ddot{\vec{r}}(t)$ in Cartesian coördinates.
- c) Write the trajectory r(t), $\phi(t)$ in plane polar coördinates.
- d) By taking time-derivatives of those expressions, re-calculate the velocity and acceleration in polar coördinates. (You will need to use the time derivatives of the \vec{e}_r and \vec{e}_ϕ unit vectors.)

3 Expressing an Unknown Vector in Term of its Known Cross and Dot Products with a Known Vector (M & T 1-13)

Suppose that all we know about a vector \vec{X} is that

$$\vec{A} \times \vec{X} = \vec{B}$$

and

$$\vec{A} \cdot \vec{X} = \varphi$$

and that we know \vec{A} , \vec{B} , and φ . Find an expression for \vec{X} in terms of the known quantities \vec{A} , \vec{B} , φ , and $|\vec{A}| = \sqrt{\vec{A} \cdot \vec{A}}$.

(Hint: Consider $\vec{A} \times \vec{B}$.)

4 Invariance of the Scalar Product

Show that the same expression holds for the dot product $\vec{A} \cdot \vec{B}$ in terms of the components of \vec{A} and \vec{B} in any orthonormal basis as follows:

a) Consider the matrix

$$\mathbf{\Lambda} = \begin{pmatrix} \Lambda_{\bar{1}1} & \Lambda_{\bar{1}2} & \Lambda_{\bar{1}3} \\ \Lambda_{\bar{2}1} & \Lambda_{\bar{2}2} & \Lambda_{\bar{2}3} \\ \Lambda_{\bar{3}1} & \Lambda_{\bar{3}2} & \Lambda_{\bar{3}3} \end{pmatrix}$$

whose transpose is

$$\boldsymbol{\Lambda}^{\mathrm{T}} = \begin{pmatrix} \Lambda_{1\bar{1}}^{\mathrm{T}} & \Lambda_{1\bar{2}}^{\mathrm{T}} & \Lambda_{1\bar{3}}^{\mathrm{T}} \\ \Lambda_{2\bar{1}}^{\mathrm{T}} & \Lambda_{2\bar{2}}^{\mathrm{T}} & \Lambda_{2\bar{3}}^{\mathrm{T}} \\ \Lambda_{3\bar{1}}^{\mathrm{T}} & \Lambda_{3\bar{2}}^{\mathrm{T}} & \Lambda_{3\bar{3}}^{\mathrm{T}} \end{pmatrix}$$

Write an expression for the (i,k)th element of $\mathbf{\Lambda}^{\mathrm{T}}$ (i.e., $\Lambda_{i\overline{k}}^{\mathrm{T}}$) in terms of the elements of $\mathbf{\Lambda}$.

b) Now let Λ be orthogonal, so that

$${f \Lambda}^{
m T}{f \Lambda}={f 1}$$
 .

Summarize the nine components of this 3×3 matrix equation in a single equation with two free indices (i.e., write an equation relating the (i, j)th component of each side of the matrix equality.)

- c) Use the result of part a) to simplify the result of part b).
- d) Let the orthogonal matrix Λ define a transformation between orthonormal bases so that the components of the vector \vec{A} in the new basis are given in terms of the components in the old basis by

$$A_{\overline{k}} = \sum_{i=1}^{3} \Lambda_{\overline{k}i} A_i$$

Use the result of part c) to show that

$$\sum_{k=1}^{3} A_{\overline{k}} B_{\overline{k}} = \sum_{i=1}^{3} A_i B_i$$