
Physics A300: Classical Mechanics I

Problem Set 7

Assigned 2002 November 6
Due 2002 November 13

Show your work on all problems!

1 Alternate Forms of General Solution

For the damped harmonic oscillator satisfying

ẍ+ 2βẋ+ ω2
0x = 0 (1)

we showed in class that the general solution could be written as

x(t) = (Ac cosω1t+ As sinω1t)e
−βt if β < ω0 (underdamped) (2a)

x(t) = (A+e
β1t + A−e

−β1t)e−βt if β > ω0 (overdamped) (2b)

x(t) = (A0 + A1t)e
−βt if β = ω0 (critically damped) (2c)

where ω1 =
√
ω2
0 − β2, β1 =

√
β2 − ω2

0, (M&T calls this ω2) and Ac, As, A0, A1, A+, and A− are
all real constants which can be set to match the desired initial conditions.

a) Show that the overdamped solution (2b) can be written in the form

x(t) = (Bc cosh β1t+Bs sinh β1t)e
−βt (3)

and determine the new constants Bc and Bs in terms of the old constants A+ and A−

b) By extending the definition of ω1 to the case where β > ω0 as ω1 = iβ1, and allowing Ac and
As to be complex, show that the underdamped solution (2a) is equivalent to the overdamped
solution (3) and determine the resulting Bc and Bs in terms of Ac and As. What conditions
must Ac and As satisfy in order for x(t) to be real in this case?

c) Show that in the limit β → ω0, i.e., ω1 → 0, the underdamped solution (2a) becomes the
critically damped solution (2c), and determine expressions for the resulting A0 and A1 in
terms of Ac and As (and ω1). What has to happen to Ac and As in order for the solution to
be finite in the limit ω1 → 0?
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2 General Solution in Terms of Initial Conditions

a) Consider a damped harmonic oscillator with x(0) = x0 and ẋ(0) = v0. Find the Ac and As
needed to make the general solution (2a) satisfy these initial conditions, and use this to write
x(t) as a function of only x0, v0, t, β, and ω1. Simplify your answer as much as possible.

b) Without using the results of problem 1, show that your solution to part a) of this problem
gives a real x(t) in the overdamped case by making the substitution ω1 = iβ1 and rewriting
the solution in terms of hyperbolic trig functions.

c) Without using the results of problem 1, show that your solution to part a) of this problem
gives a finite x(t) in the critically-damped case by taking the limit ω1 → 0 and deriving an
expression for x(t) in the critically damped case which does not contain ω1.

3 Energy Transfer

Consider the steady-state solution

x(t) = Aout cos(ωt− δ)

to a forced, damped harmonic oscillator.

a) Calculate the work done on the oscillator per unit time per unit mass by the three forces in
the problem:

i) FHooke = −mω2
0x

ii) Fdamping = −2mβẋ

iii) Fdriving = mω2
0Ain cosωt

This is the net power per unit mass deposited into the oscillator by each force.

b) Calculate the net work per unit mass done by each individual force over a complete cycle of
the oscillator. Show explicitly that no net work is done by the restoring force FHooke and that
the amount of energy dissipated by the retarding force Fdamping is equal to the amount of work
done by the driving force Fdriving. Calculate the frequency ω at which this energy transfer per
cycle is greatest, for a fixed driving amplitude Ain.
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4 Fourier Analysis

Consider a square wave of period T and amplitude x0, which is given inside the interval −T/2 <
t < T/2 by

Ain(t) =


−x0 when − T/2 < t < −T/4
x0 when − T/4 < t < T/4

−x0 when T/4 < t < T/2

and which is defined outside that interval by its periodicity: Ain(t+ T ) = Ain(t).

a) Find the coëfficients ainn and binn in the Fourier series

Ain(t) =
1

2
ain0 + +

∞∑
n=1

ainn cos

(
2πnt

T

)
+
∞∑
n=1

binn sin

(
2πnt

T

)
Express your answers in a form involving no sines or cosines.

b) If the square wave is applied to a harmonic oscillator of natural frequency ω0 and damping
parameter β, i.e.:

ẍ+ 2βẋ+ ω2
0x = ω2

0A
in(t),

find the values of ωn, Aout
n , and δn in the expansion

x(t) =
∞∑
n=0

Aout
n cos(ωnt− δn)

of the steady-state solution.
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