Physics A300: Classical Mechanics I #### Problem Set 7 Assigned 2002 November 6 Due 2002 November 13 Show your work on all problems! #### Alternate Forms of General Solution 1 For the damped harmonic oscillator satisfying $$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = 0 \tag{1}$$ we showed in class that the general solution could be written as $$x(t) = (A_c \cos \omega_1 t + A_s \sin \omega_1 t)e^{-\beta t} \qquad \text{if } \beta < \omega_0 \text{ (underdamped)}$$ $$x(t) = (A_+ e^{\beta_1 t} + A_- e^{-\beta_1 t})e^{-\beta t} \qquad \text{if } \beta > \omega_0 \text{ (overdamped)}$$ $$x(t) = (A_0 + A_1 t)e^{-\beta t} \qquad \text{if } \beta = \omega_0 \text{ (critically damped)}$$ $$(2a)$$ $$(2b)$$ $$(2b)$$ $$x(t) = (A_{+}e^{\beta_{1}t} + A_{-}e^{-\beta_{1}t})e^{-\beta t} \qquad \text{if } \beta > \omega_{0} \text{ (overdamped)}$$ (2b) $$x(t) = (A_0 + A_1 t)e^{-\beta t}$$ if $\beta = \omega_0$ (critically damped) (2c) where $\omega_1 = \sqrt{\omega_0^2 - \beta^2}$, $\beta_1 = \sqrt{\beta^2 - \omega_0^2}$, (M&T calls this ω_2) and A_c , A_s , A_0 , A_1 , A_+ , and A_- are all real constants which can be set to match the desired initial conditions. a) Show that the overdamped solution (2b) can be written in the form $$x(t) = (B_c \cosh \beta_1 t + B_s \sinh \beta_1 t)e^{-\beta t}$$ (3) and determine the new constants B_c and B_s in terms of the old constants A_+ and A_- - b) By extending the definition of ω_1 to the case where $\beta > \omega_0$ as $\omega_1 = i\beta_1$, and allowing A_c and A_s to be complex, show that the underdamped solution (2a) is equivalent to the overdamped solution (3) and determine the resulting B_c and B_s in terms of A_c and A_s . What conditions must A_c and A_s satisfy in order for x(t) to be real in this case? - c) Show that in the limit $\beta \to \omega_0$, i.e., $\omega_1 \to 0$, the underdamped solution (2a) becomes the critically damped solution (2c), and determine expressions for the resulting A_0 and A_1 in terms of A_c and A_s (and ω_1). What has to happen to A_c and A_s in order for the solution to be finite in the limit $\omega_1 \to 0$? ### 2 General Solution in Terms of Initial Conditions - a) Consider a damped harmonic oscillator with $x(0) = x_0$ and $\dot{x}(0) = v_0$. Find the A_c and A_s needed to make the general solution (2a) satisfy these initial conditions, and use this to write x(t) as a function of only x_0 , v_0 , t, β , and ω_1 . Simplify your answer as much as possible. - b) Without using the results of problem 1, show that your solution to part a) of this problem gives a real x(t) in the overdamped case by making the substitution $\omega_1 = i\beta_1$ and rewriting the solution in terms of hyperbolic trig functions. - c) Without using the results of problem 1, show that your solution to part a) of this problem gives a finite x(t) in the critically-damped case by taking the limit $\omega_1 \to 0$ and deriving an expression for x(t) in the critically damped case which does not contain ω_1 . # 3 Energy Transfer Consider the steady-state solution $$x(t) = A_{\text{out}} \cos(\omega t - \delta)$$ to a forced, damped harmonic oscillator. - a) Calculate the work done on the oscillator *per unit time per unit mass* by the three forces in the problem: - i) $F_{\text{Hooke}} = -m\omega_0^2 x$ - ii) $F_{\text{damping}} = -2m\beta \dot{x}$ - iii) $F_{\text{driving}} = m\omega_0^2 A_{\text{in}} \cos \omega t$ This is the net power per unit mass deposited into the oscillator by each force. b) Calculate the net work per unit mass done by each individual force over a complete cycle of the oscillator. Show explicitly that no net work is done by the restoring force F_{Hooke} and that the amount of energy dissipated by the retarding force F_{damping} is equal to the amount of work done by the driving force F_{driving} . Calculate the frequency ω at which this energy transfer per cycle is greatest, for a fixed driving amplitude A_{in} . ## 4 Fourier Analysis Consider a square wave of period T and amplitude x_0 , which is given inside the interval -T/2 < t < T/2 by $$A^{\text{in}}(t) = \begin{cases} -x_0 & \text{when } -T/2 < t < -T/4\\ x_0 & \text{when } -T/4 < t < T/4\\ -x_0 & \text{when } T/4 < t < T/2 \end{cases}$$ and which is defined outside that interval by its periodicity: $A^{\text{in}}(t+T) = A^{\text{in}}(t)$. a) Find the coëfficients a_n^{in} and b_n^{in} in the Fourier series $$A^{\rm in}(t) = \frac{1}{2}a_0^{\rm in} + \sum_{n=1}^{\infty} a_n^{\rm in}\cos\left(\frac{2\pi nt}{T}\right) + \sum_{n=1}^{\infty} b_n^{\rm in}\sin\left(\frac{2\pi nt}{T}\right)$$ Express your answers in a form involving no sines or cosines. b) If the square wave is applied to a harmonic oscillator of natural frequency ω_0 and damping parameter β , i.e.: $$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = \omega_0^2 A^{\text{in}}(t),$$ find the values of ω_n , A_n^{out} , and δ_n in the expansion $$x(t) = \sum_{n=0}^{\infty} A_n^{\text{out}} \cos(\omega_n t - \delta_n)$$ of the steady-state solution.