Rigid Bodies and Mass Distributions
(Symon Chapter Five)

Physics A300*
Fall 2003
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1 Definition of a Rigid Body

A rigid body is a system of particles which all move together, like a bunch of point particles
connected by massless rigid rods:

*Copyright 2003, John T. Whelan, and all that



The rigidity is reflected by the fact that while each particle can move, and therefore change
the position vectors, all the distances |7, — 7| are constant. Only the orientation and overall
location can change; there is no flexing or twisting:

Next semester, we will consider the general case; for now we will just consider rotation about
a single axis.

2 Correspondence Between Collections of Point Masses
and Continuous Mass Distributions

It is often useful to think about a continuous distribution of mass rather than a collection
of discrete points. For example, one might want to know the properties of a slab of rock
of a given density without having to count up all the individual atoms in the slab. We can
still carry over our standard formulas by thinking of the mass distribution as a collection of
infinitesimal little volume elements; the sum over particles is replaced by a sum over volume
elements, which becomes a triple integral over the volume in the limit that the individual
elements become small:
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To make the correspondence, one replaces the particle of mass my at position 7, with a
little block of volume d3V at position 7. The solid has some density p(7) at that position,
in terms of which the mass of the little block, which we can call dM to emphasize its
triply-infinitesimal nature, isﬂ

d*M = p(7) d*V (2.1)

To translate any of our expressions from chapter four into the realm of continuous mass
distributions, we just need to replace sums over k with triple integrals, and the factor of

"'Warning: Symon writes this relationship as p = ‘Z—J\‘f which looks deceptively like a derivative, but doesn’t
make much sense if we try to interpret it as one.



my, which always appears in those sums is replaced with the infinitesimal volume d3M from
(2.1). This is easiest to see from the example of the total mass and the center of mass vector:

Point Masses Mass Distribution
M="m M =[] p(r) v
k=1
5 Zk lmkrk — IJI ,0(7?) Fd3V
R= A R = A

2.1 Notational Aside

Introducing the traditional notation of p for density has put is in a quandry, since we were
already using p as a cylindrical coordinate equal to the distance from the z axis. Oue notation
has been (z,y, z) for Cartesian, (p, ¢, z) for cylindrical and (r, 8, ¢) for spherical coérdinates.
What should we use instead of p as our cylindrical radial coordinate? Most of the traditional
choices have problemsf]

e 7 (used by Symon) can cause confusion when comparing cylindrical and spherical
coordinates; we’d always like r to be equal to the length of the position vector in
three (or two) dimensions.

e R is no good, since we're already using it for the length of the center of mass vector:

R = |R|

e 1y, as in the two-dimensional radial coordinate becomes confusing if there is a position
vector 7, of the 2nd particle, where we’'d expect ry = |75].

e s (used by Griffiths in the latest edition of Introduction to Electrodynamics) isn’t
quite ideal in our case, since we already use that as an arbitrary parameter when
parametrizing curves.

So we will henceforth use what is probably a new notation, q. The cylindrical coordinates
of a point are thus now (g, ¢, z),

2.2 Example: Mass of a Prism

We'll worry about motion later; for now let’s look at an example of how to calculate the
mass for a solid body, This body is a right triangular prism of height h, which for simplicity
we take to have uniform density p. The triangular faces have legs of length a and b, and

2 Another approach would be to use a different letter for density, but since the Greek letter rho is so
universal there, we’d end up using something like g, which would be hard to write.



look like so:
Y

a

The prism is defined by

z>0 (2.2a)
y=>0 (2.2b)
_h <z < h (2.2¢)
2 2
xb+ay < ab (2.2d)

To calculate the total mass, we have to integrate pd®V over the entire prism:

d3V

M:prd?» /W f pdrdyds = ph j dx dy (2.3)

prism h/2 triangle triangle
————

area
where the double integral over x and y is the area of the triangle.

This integral has to cover every point in the triangle once. As a review of how one does
area integrals (which extends naturally to volume integrals), we follow through in detail how
one does the integral in two different ways, either one of which is correct, and both of which
(naturally) give the right answer.

2.2.1 <« integral inside y integral

Here we integrate over z first, then over y. We need to choose the limits of those two integrals
to cover each point in the triangle once. Taking the integrals from the outside in, the range
of y values included in the prism is

0<y<b (2.4)

Now, the x integral is inside the y integral, which means that the limits need to cover the
possible x values only for that given y. We can look at the triangle to see that the lower
limit of that integral is still z = 0, but the upper limit is cut off by the edge of the triangle
atz=a(l- %)
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That then makes the integral for the area of the triangld’]

b a(1-4) b

Area:%:/ / dx dy:%:/a(l—g>dy
ph 0 0 ph 0 b
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2.2.2 y integral inside x integral

(2.5)

Here we integrate over y first, then over x. We need to choose the limits of those two integrals
to cover each point in the triangle once. Taking the integrals from the outside in, the range
of z values included in the prism is

0<z<a (2.6)

Now, the y integral is inside the = integral, which means that the limits need to cover the
possible y values only for that given x. We can look at the triangle to see that the lower
limit of that integral is still y = 0, but the upper limit is cut off by the edge of the triangle
at y => (1 — %)
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3Note that the limit of the y integral does not depend on z, as it must not, since it’s outside the z integral,
while the limit of the x integral does depend on gy, which it may, since it’s inside the y integral.



That then makes the integral for the area of the triangld]]

a b(l—%) a
Area:M: / dy | doe = — = b<1—£>dx
ph 0 0 h 0 a

p
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(2.7)

which is the same answer as before

2.3 Excercise: Center-of-Mass Coordinates

As an exercise, you should do the corresponding integrals for the center of mass coérdinates.
These are the Cartesian compoments of the center-of-mass vector

= f‘ffprism ngv

R= = X&+ Y+ 2 (2.8)

and the limits on the integrals over the prism are just the same ones we found when calcu-
lating the mass. This means, explicitly,

1 b ra(1-%)
X = M/ / / pxdrdydz (2.9a)
- Jo Jo
1 bra(1-%)
Y = M/ / / pydxrdydz (2.9b)
- Jo Jo

7 = %/_h /Ob /Oa(lz)pzd:cdydz (2.9¢)
2 (2.9d)
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Note that this only works because the Cartesian basis vectors z, g, and Z are constants, and
can be pulled out of the triple integrals.

3 Rotation about an Axis

A Appendix: Correspondence to Class Lectures

Date Sections | Pages
2003 November 25 | [1H2.1 1H3
2003 December 2 | [2.2H3 3H6
2003 December 4 (Review)

4Note that the limit of the z integral does not depend on y, as it must not, since it’s outside the y integral,
while the limit of the y integral does depend on x, which it may, since it’s inside the x integral.

6



	Definition of a Rigid Body
	Correspondence Between Collections of Point Masses and Continuous Mass Distributions
	Notational Aside
	Example: Mass of a Prism
	x integral inside y integral
	y integral inside x integral

	Excercise: Center-of-Mass Coördinates

	Rotation about an Axis
	Appendix: Correspondence to Class Lectures

