Physics A300: Classical Mechanics I

Problem Set 1

Assigned 2003 August 28 Due 2003 September 4

Show your work on all problems! Be sure to give credit to any collaborators, or outside sources used in solving the problems.

1 Drill Problem on Dimensional Analysis

1.1 Dimensionally Meaningful Expressions

Which of the following expressions or relations are sensible from a dimensional point of view? For the ones which don't, state the reason why not.

- a) 40 kg + 15 N
- b) 5 ft + 1 km
- c) F > 5 where F is a force
- d) F = mx where F is a force, m is a mass, and x is a length
- e) $v^2 5G\frac{M}{r}$ where M is a mass, r is a length, and $G = 6.67 \times 10^{-11} \,\mathrm{N \cdot m^2/kg^2}$
- f) $\ddot{x} = ge^t$ where x is a coördinate distance, $g = 9.8 \,\mathrm{m/s^2}$, and t is a time

1.2 Conversion of Units

Convert the following expressions into the units requested

- a) $\frac{12\,\mathrm{cm}+36\,\mathrm{m}}{3\times10^8\,\mathrm{m/s}}$ expressed in nanoseconds (1 s = 10⁹ ns) (Your answer should be exact)
- b) 6.25 in/yr expressed in centimeters per second. (Your answer should be written to three significant figures.)

2 Projectile Motion

A baseball player hits a popup to the infield. If the ball strikes the bat $0.70\,\mathrm{m}$ above home plate and takes off in a direction making an angle 60° with the horizontal, what must its initial speed be in order to land on second base, $40.\,\mathrm{m}$ away? Ignore air resistance, and take the acceleration of gravity to be $9.8\,\mathrm{m/s}^2$.

3 Symon Chapter One Problem 9

4 Symon Chapter One Problem 12