Physics A300: Classical Mechanics I

Problem Set 8

Assigned 2002 November 11 Due 2002 November 18

1 Central Force with Quadratic Potential

Consider a potential $V(r) = \frac{1}{2}kr^2$.

- a) For a particle of mass m moving in this potential, with angular momentum L, construct the effective potential $V_{\text{eff}}(r)$ and sketch a plot of $V_{\text{eff}}(r)$ versus r.
- b) For what values of total energy are there two turning points r_{\min} and r_{\max} ? Find r_{\min} and r_{\max} in terms of the energy E.
- c) Use the function $V_{\text{eff}}(r)$ to find the radius r_{circ} of a circular orbit with angular momentum L. What is the total energy E_{circ} of this orbit?
- d) For an energy only slightly larger than $E_{\rm circ}$, calculate the frequency ω_R of the small radial oscillations about $r_{\rm circ}$. Calculate the angular frequency ω_{Φ} of the angular oscillations when $r \approx r_{\rm circ}$ and compare the two frequencies quantitatively. (Both frequencies should be expressed in terms of the parameters k, m, and L, and not in terms of e.g., $r_{\rm circ}$ or $E_{\rm circ}$.)

2 Conic Sections

Demonstrate that the orbit

$$r(1 + \varepsilon \cos \phi) = \alpha \tag{2.1}$$

with constants $\alpha > 0$ and $\varepsilon \geq 0$ is indeed a conic section with eccentricity ε , semimajor axis $\alpha/(1-\varepsilon^2)$, and one focus at r=0 as follows:

- a) Consider the points $\mathcal{P} \equiv (x, y)$, $\mathcal{O} \equiv (0, 0)$, $\mathcal{F}_{\pm} \equiv (\pm 2c, 0)$, (where c > 0) and the line $\mathcal{L} \equiv x = 2p > 0$. Calculate the following distances in Cartesian coördinates, then convert your results into the standard polar coördinates using $x = r \cos \phi$ and $y = r \sin \phi$, simplifying as much as possible.
 - i) the length $d_{\mathcal{OP}}$ of the straight line segment from \mathcal{O} to \mathcal{P}
 - ii) the length $d_{\mathcal{F}_{\pm}\mathcal{P}}$ of the straight line segment from \mathcal{F}_{\pm} to \mathcal{P}
 - iii) the distance $d_{\mathcal{LP}}$ between the point \mathcal{P} and the line \mathcal{L}
- b) A circle of radius a centered at \mathcal{O} is the set of all points a distance a from \mathcal{O} :

$$d_{\mathcal{OP}} = a \tag{2.2}$$

Show that when $\varepsilon = 0$, (2.1) is equivalent to (2.2) for a suitable choice of a, and find this a in terms of α .

c) An ellipse of semimajor axis a > 0 with foci at \mathcal{F}_{-} and \mathcal{O} is the set of all points such that the sum of their distances from the two foci is 2a:

$$d_{\mathcal{F}_{-}\mathcal{P}} + d_{\mathcal{O}\mathcal{P}} = 2a \tag{2.3}$$

Show that when $0 < \varepsilon < 1$, (2.1) is equivalent to (2.3) for a suitable choice of a and c, and find these values in terms of α and ε . (Hint: this is easiest if you solve (2.3) for $d_{\mathcal{F}_{-}\mathcal{P}}$, square it, and set it equal to the square of the result from part a), using (2.1) to eliminate $\cos \phi$, and requiring equality for any value of r.)

d) A parabola with focus \mathcal{O} and directrix \mathcal{L} is the set of all points equidistant from \mathcal{O} and \mathcal{L} :

$$d_{\mathcal{LP}} = d_{\mathcal{OP}} \tag{2.4}$$

Show that when $\varepsilon = 1$, (2.1) is equivalent to (2.4) for a suitable choice of p, and find this p in terms of α .

e) The left branch of a hyperbola of semimajor axis a < 0 with foci at \mathcal{O} and \mathcal{F}_+ is the set of all points such that the difference of their distances from the two foci is -2a > 0:

$$d_{\mathcal{F}_{\perp}\mathcal{P}} - d_{\mathcal{O}\mathcal{P}} = -2a \tag{2.5}$$

Show that when $\varepsilon > 1$, (2.1) is equivalent to (2.5) for a suitable choice of a and c, and find these values in terms of α and ε . (Hint: this is easiest if you solve (2.5) for $d_{\mathcal{F}_+\mathcal{P}}$, square it, and set it equal to the square of the result from part a), using (2.1) to eliminate $\cos \phi$, and requiring equality for any value of r.)

3 Circular Orbits in a Gravitational Field

Note: None of your answers to this problem should involve the constant K; you should use the relationship K = -GMm to express them in terms of the masses of the attracting body and the test particle.

Consider a test particle of mass m moving in a circular orbit of radius R under the gravitational attraction of a body of mass M fixed at the center of the circle.

- a) Use Kepler's third law to calculate the orbital speed v as a function of R.
- b) Express the total energy E and angular momentum L as functions of the radius R of the orbit (and not of each other or v).
- c) Use the result of part a) to find the kinetic energy K as a function of R.
- d) Write the potential energy V(R) and verify that T + V = E.
- e) Suppose we reduce the orbital energy from a satellite in such a way that it changes from one circular orbit to another. Do the following quantities increase or decrease?
 - i) orbital radius; ii) orbital speed; iii) orbital period
 - iv) kinetic energy; v) potential energy; vi) orbital angular momentum