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1 Euler’s Equations

Now consider how a rigid body actually moves → Chapter 11.

Total angular momentum ~L =
←→
I · ~ω for the body is because

d~L

dt
= ~N (1.1)

(where ~N is the total external torque) just as

d~P

dt
= ~F (1.2)

(where ~F is the total external force).
In an inertial coördinate system the body will in general change its orientation and the

components of
←→
I will change.

To simplify the equation of motion for ~ω, analyze in a rotating basis co-moving with the
body; then choose the axes to point along the principal axes of inertia sothat ~e ′i = ûi. Then

I ′xx = I1 (1.3a)

I ′yy = I1 (1.3b)

I ′zz = I1 (1.3c)

and the off-diagonal components vanish. This means

~L =
←→
I · ~ω =

3∑
i=1

L′i~e
′
i =

3∑
i=1

3∑
j=1

I ′ijω
′
j~e
′
i =

3∑
i=1

Iiω
′
i~e
′
i (1.4)

Now since the basis {~e ′i} is rotating,

~N =
d~L

dt
=
d′~L

dt
+ ~ω × ~L (1.5)

where
d′~L

dt
=

3∑
i=1

dL′i
dt
~e ′i (1.6)

is the usual vector made up of the time derivatives of the components of a vector in the
rotating coördinate system.

Note that as long as the primed basis vectors are co-rotating with the rigid body,

d′
←→
I

dt
=

3∑
i=1

3∑
j=1

dI ′ij
dt
~e ′i~e

′
j (1.7)

which means that
~N =

←→
I · d

′~ω

dt
+ ~ω ×

←→
I · ~ω (1.8)
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Looking at the x′ component in detail, we have

N ′x = I1
ω′x
dt

+ (ω′yL
′
z − ω′zL′y) = I1

ω′x
dt

+ (I3ω
′
yω
′
z − I2ω

′
zω
′
y) (1.9)

Things work out similarly for the y′ and z′ components, and we have

N ′x = I1
ω′x
dt

+ (I3 − I2)ω′yω
′
z (1.10a)

N ′y = I2

ω′y
dt

+ (I1 − I3)ω′xω
′
z (1.10b)

N ′z = I3
ω′z
dt

+ (I2 − I1)ω′xω
′
y (1.10c)

These are called Euler’s Equations. Symon writes this as his equation (11.7), but seems to
have forgotten he’s talking about the components in the coördinate system co-rotating with
the body (since he calls the components of ~ω simply {ω1, ω2, ω3} rather than {ω′x, ω′y, ω′z}.

Note that if thee is no external torque, the components of ~ω in the body system can still
change, if the inertia tensor is not isotropic (e.g., if I1 6= I2).

1.1 Free Precession of a Prolate or Oblate Object

For example, consider the case where ~N = ~0 and I1 = I2 6= I3. Examples of this would be a
spheroid (an ellipsoid with two equal axes) or a square prism.

Euler’s equations become

ω̇′x =
I2 − I3

I1

ω′yω
′
z =

I1 − I3

I1

ω′yω
′
z (1.11a)

ω̇′y =
I3 − I1

I1

ω′xω
′
z (1.11b)

ω̇′z = 0 (1.11c)

So ω′z is a constant and

Ω =
I3 − I1

I1

ω′z (1.12)

is a constant frequency, in terms of which the equations for ω̇′x and ω̇′y become

ω̇′x = −Ωω′y (1.13a)

ω̇′y = Ωω′x (1.13b)

This is not the most difficult system of ordinary differential equations in the world. The
general solution is

ω′x = A cos(Ωt+ δ) (1.14a)

ω′y = A sin(Ωt+ δ) (1.14b)

where A and δ are constants chosen to match the initial conditions.
Let’s visualize what’s happening in the two cases:
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1.1.1 Oblate I3 > I1

Then

β =
Ω

ω′z
> 0 (1.15)

Now, since
ω · ω = ω′x

2
+ ω′y

2
+ ω′z

2
= A2 + ω′z

2
= constant (1.16)

and d~L
dt

= ~0 the lengths of the vectors ~ω and ~L don’t change although their components in
one or more bases can.

The components of ~L along the body axes are

L′x = I1ω
′
x = I1A cos(Ωt+ δ) (1.17a)

L′y = I1ω
′
y = I1A sin(Ωt+ δ) (1.17b)

L′z = I3ω
′
z (1.17c)

So if you look at the components in along the primed axes (“in the body frame”) ~L and ~ω
appear to precess about a “fixed” z′ axis with and angular frequency Ω = I3−I1

I1
ω′z. Assuming

ω′z > 0 and taking a snapshot at an instant when ω′x (and thus L′x) happens to vanish, it
looks like this:

- y′

6

z′

�
x′

�
�
�
�
�
��

~ω

⊗
d′~ω
dt

6~L
⊗
d′~L
dt

Of course, in the inertial frame, it is ~L that is fixed (d
~L
dt

= ~N = ~0) and ~ω and ẑ′ both precess
about it.

�

�

�

�

�

��

~ω

� d~ω
dt

6

~L

6
ẑ′
⊗dẑ′

dt

This is why there’s no permanent South Pole: The Earth’s rotation is not quite aligned with
its body axis, so it “wobbles”. The South Pole is where the direction of ω intersects the
Earth, and that is precessing.
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1.1.2 Prolate I3 < I1

Then
Ω

ω′z
< 0 (1.18)

and the precession goes the other way.

- y′

6

z′

�
x′

�
�
�
�
�
��

~ω

�
d′~ω
dt

6

~L

� d′~L
dt

@

@

@

@

@

@I

~ω

�d~ω
dt

6

~L

6

ẑ′
�dẑ′

dt

This is why, when a football is not thrown in a tight spiral, you see the nose spin.

2 Euler Angles

Three numbers are needed to describe the orientation of a rigid bodyin space. For example,
if you consider the orthonormal unit vectors û1, û2, û3 associated with the principal axes,
specifying û1 takes two parameters (it’s a vector, but you know |û1| = 1), then specifying
û2, which lies ina planeperpendicular to û1, requires one,andthen you’re done because û3 =
û1 × û2.

There are lots of different conventions on what those numbers are, e.g., in aeronautics one
uses yaw, pitch, and roll. Our convention (i.e., Symon’s, but it’s a good one) is as follows.
(See Figure 11.4 in Symon.) Rather than build up a mondo rotation matrix out of three
rotations, focus on the two sets of axes x̂, ŷ, ẑ and û1 = x̂′, û2 = ŷ′, û3 = ẑ′. In particular,
treat the “z” axes preferentially, and look at the equatorial planes of the two systems.

• θ is the angle between the z and z′ axes, i.e., ẑ · û3 = cos θ;

• φ completes the specification of û3;

• ψ locates û1 and û2 via a rotation about û3.

Now, we might like θ and φ to be the spherical coördinate angles corresponding to the
direction û3, but the convention used actually makes those angles θ and φ− π

2
.

Convention/Definition: The two equatorial planes (perpendicular to ẑ and perpen-
dicular to û3, respectively) intersect in a line called the line of nodes (which is perpendicular
to both ẑ and û3). φ is the angle from the x axis to the line of nodes. It is useful to define
an “intermediate” set of axes ξ̂, η̂, ζ̂, where ζ̂ = û3, ξ̂ points along the line of nodes, and
η̂ = ζ̂ × ξ̂.

We still have to specify the orientation of û2 and û3, and we do that by saying ψ is the
angle (around the z′ axis) from the line of nodes to û1.

Look at selected cross-sections. . .
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To rotate x̂, ŷ, ẑ into û1, û2, û3:

1. Rotate φ about ẑ

2. Rotate θ about ξ̂

3. Rotate ψ about ζ̂ = û3

Of course, what we really want is ~ω in terms of θ̇, φ̇, and ψ̇.
Symon proves that if x̂∗, ŷ∗, ẑ∗ are rotating relative to x̂, ŷ, ẑ at angular velocity ~ω1 and

x̂′, ŷ′, ẑ′ are rotating relative to x̂∗, ŷ∗, ẑ∗ at angular velocity ~ω2 then x̂′, ŷ′, ẑ′ are rotating
relative to x̂, ŷ, ẑ at angular velocity ~ω1 + ~ω)2. Basically, this is a manifestation of the fact
that infinitesimal rotations add like vectors.

This means
~ω = θ̇ξ̂ + φ̇ẑ + ψ̇û3 (2.1)

Now, to attach lots of problems, we want to use a Lagrangian method, which means finding

T = 1
2
~ω ·
←→
I · ~ω in terms of θ, φ, ψ, θ̇, φ̇, ψ̇ so we should try to resolve

~ω = ω′1û1 + ω′2û2 + ω′3û3 (2.2)

since

T =
1

2
~ω · ~ω =

1

2
I1ω

′
1

2
+

1

2
I2ω

′
2

2
+

1

2
I3ω

′
3

2
(2.3)

So, look at the geometry in order to get ξ̂ and ẑ in terms of the basis vectors pointing along
principal axes of inertia.

ξ̂ = û1 cosψ − û2 sinψ (2.4a)

η̂ = û1 sinψ + û2 cosψ (2.4b)

ζ̂ = û3 (2.4c)

which means

ẑ = η̂ sin θ + ζ̂ cos θ = û1 sin θ sinψ + û2 sin θ cosψ + û3 cos θ (2.5)

Putting it together,

~ω = (θ̇ cosψ + φ̇ sin θ sinψ)û1 + (−θ̇ sinψ + φ̇ sin θ cosψ)û2 + (φ̇ cos θ + ψ̇)û3 (2.6)

6



In general,

T (θ, φ, ψ, θ̇, φ̇, ψ̇) =
1

2
I1(θ̇ cosψ+φ̇ sin θ sinψ)2+

1

2
I2(−θ̇ sinψ+φ̇ sin θ cosψ)2+

1

2
I3(φ̇ cos θ+ψ̇)2

(2.7)
This has cross terms involving θ̇φ̇ and φ̇ψ̇, but if I1 = I2, the θ̇φ̇ terms cancel, and it simplifies
somewhat. Then

T =
1

2
I1θ̇

2 +
1

2
I1 sin2 θφ̇2 +

1

2
I3(φ̇ cos θ + ψ̇)2 (when I1 = I2) (2.8)

This is the setup for the symmetrical top

3 The Symmetrical Top

One of the classic rigid body problems.
Consider a “solid of rotation” which has rotational symmetry about a symmetry axis

which we call û3. From the geometry, û3 is a principal axis of inertia, and I1 = I2. Also, the
center of mass is on the symmetry axis. Let ` be the distance of the center of mass from the
tip of the top. Describe the situation where one point (the aforementioned tip) is fixed, in a
Lagrangian formalism.

The generalized coördinates are the Euler angles θ, φ, ψ. From Section 2, we know

T =
1

2
I1θ̇

2 +
1

2
I1 sin2 θφ̇2 +

1

2
I3(φ̇ cos θ + ψ̇)2 (3.1)

If the top is moving in a uniform gravitational field in the z direction, with the zero of
potential energy defined at the height of the fixed tip, the potential energy is

V =
y

ρgz dx dy dz = Mg · (z coörd of C.O.M.) = Mg` cos θ (3.2)

so

L =
1

2
I1θ̇

2 +
1

2
I1 sin2 θφ̇2 +

1

2
I3(φ̇ cos θ + ψ̇)2 −Mg` cos θ (3.3)

We can analyze the motion using symmetries.

∂L

∂φ
= 0 =

∂L

∂ψ
(3.4)

so φ and ψ are ignorable coördinates and pφ and pψ are conserved. Also

∂L

∂t
= 0 (3.5)

so H will be conserved.
The conserved conjugate momenta are

pφ =
∂L

∂φ̇
= I1 sin2 θφ̇+ I3 cos θ(ψ̇ + φ̇ cos θ) (3.6a)

pψ =
∂L

∂ψ̇
= I3(ψ̇ + φ̇ cos θ) (3.6b)
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For reference,

pθ =
∂L

∂θ̇
= I1θ̇ (3.6c)

The Hamiltonian is

H = pθθ̇ + pφφ̇+ pψψ̇ − L
= I1θ̇

2 + I1 sin2 θφ̇2 + I3φ̇ cos θ(ψ̇ + φ̇ cos θ) + I3ψ̇(ψ̇ + φ̇ cos θ)

− 1

2
I1θ̇

2 − 1

2
I1 sin2 θφ̇2 − 1

2
I3(φ̇ cos θ + ψ̇)2 +Mg` cos θ

= T + V = E

(3.7)

I.e., since the kinetic energy (3.1) is quadratic in the velocities (this time including cross
terms) the Hamiltonian is equal to the total energy.

If we make the substitution
ψ̇ + φ̇ cos θ =

pψ
I3

(3.8)

(3.6a) becomes
pφ = I1 sin2 θφ̇+ pψ cos θ (3.9)

And

E =
1

2
I1θ̇

2 +
(pφ − pψ cos θ)2

2I1 sin2 θ
+
p2
ψ

2I3

+mg` cos θ (3.10)

which can be analyzed analogous to

E =
1

2
mẋ2 + V (x) (3.11)

or

E =
1

2
mṙ2 + Veff(r) (3.12)

4 Course Summary

I A. Gravity (Chapter 6)

B. Moving Coördinate Systems (Sec 7.1-7.4 + tides)

II C. Lagrangian Mechanics (Sec 9.1-9.10)

III D. Tensors (Sec 10.1-10.5 – Note differences in our notation)

E. Rigid Body Motion (Sec 11.1, 11.2, 11.4, [11.5])

4.1 Gravity & Non-Inertial Coördinates

See summary from 2004 February 17 (Section 6 of Chapter 7 Notes)
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4.2 Lagrangian Mechanics

See lightning recap from 2004 March 25 and review from 2004 April 13 (Sections 6-7 of
Chapter 9 notes)

4.3 Tensors

Tensor Notation Matrix Notation

~A = Axx̂+ Ayŷ + Az ẑ (4.1)

x̂ = ê1, ŷ = ê2, ẑ = ê3 (4.2)

so

~A =
3∑
i=1

Aiêi (4.3)

A =

AxAy
Az

 AT =
(
Ax Ay Az

)
(4.4)

A =

A1

A2

A3

 AT =
(
A1 A2 A3

)
(4.5)

~A · ~B = AxBx + AyBy + AzBz = ATB (4.6)

Since this is just a number, the two are equal. Otherwise, we don’t talk about equality, but
rather correspondence

��
��XXXX~A = A (4.7)

( ~A⊗ ~B) · ~C = ~A( ~B · ~C) (4.8) (ABT)C = A(BTC) (4.9)

←→
T =

3∑
i=1

3∑
j=1

Tij êiêj (4.10)

note
Tij = êi ·

←→
T · êj (4.11)

T =

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

 (4.12)

A symmetric matrix has TT = T i.e., Tij = Tji

A symmetric tensor has
←→
T

T
=
←→
T .

If
←→
T is symmetric, there is always an orthonormal basis {û1, û2, û3} such that

←→
T = T1û1 ⊗ û1 + T2û2 ⊗ û2 + T3û3 ⊗ û3 (4.13)

ûi is an eigenvector with eigenvalue Ti, since
←→
T · ûi = Tiûi

4.4 Inertia Tensor

~L =
←→
I · ~ω (4.14)

where
←→
I =

N∑
k=1

mk(r
2
k

←→
1 − ~rk ⊗ ~rk) (4.15)

• Be familar with derivation
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• Be able to construct
←→
I from distribution of point masses or

←→
I =

y
(r2←→1 − ~r ⊗ ~r) ρ(~r) d3V (4.16)

Note! This is a lot like

ϕ(~r) = −
N∑
k=1

Gmk

|~r − ~rk|
(4.17)

or

~g(~r) = −
y

Gmkρ(~r ′)
(~r − ~r ′)
|~r − ~r ′|

d3V ′ (4.18)

Would do well to practice this!

Also note

• Rotation of axes to represent same tensor
←→
I in different bases.

• Translation of origin to get different
←→
I O′ vs

←→
I O

Note the identity ←→
I O =

←→
I G +M(R2←→1 − ~R⊗ ~R) (4.19)

where ~R is the position vector of the center of mass G with respect to the origin O

Note Iij = Iji emphalways.
THE INERTIA TENSOR IS SYMMETRIC

4.5 Rigid Body Motion

4.5.1 Euler’s Equations

~N =
d~L

dt
=
d′~L

dt
+ ~ω × ~L =

d′(~I · ~ω)

dt
+ ~omega×

←→
I · L (4.20)

where ~N is the external torque. If the primed coördinate axes are chosen to move and rotate
with the rigid body, and line up with the body axes, then I ′ij = δijIi for all time.

Be familiar with the derivation and consequences.

• If I1 = I2 6= I3, then ~ω and ~L precess around û3 in the body frame while û3 and ~ω
precess around ~L in an inertial frame.

• If all the eigenvalues are different, the body can precess around the axis with the highest
or lowest eigenvalue, but not the middle one (you showed this on the homework).

4.5.2 Euler Angles

• Be able to do rotational manipulations

• Be acquainted with the symmetrical top as an application
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A Appendix: Correspondence to Class Lectures

Date Sections Pages Topics
2004 Apr 27 1 2–5 Euler’s Equation; Free Precession
2004 Apr 27 2 5–7 Euler Angles
2004 Apr 29 3 7–8 The Symmetric Top
2004 May 4 4 8–10 Course Summary
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