# Rigid Body Motion (Symon Chapter Eleven)

# Physics $A301^*$

# Spring 2004

# Contents

| 1 | Euler's Equations                                      |    |  |  |  |  |
|---|--------------------------------------------------------|----|--|--|--|--|
|   | 1.1 Free Precession of a Prolate or Oblate Object      |    |  |  |  |  |
|   | 1.1.1 Oblate $I_3 > I_1 \dots \dots \dots \dots \dots$ |    |  |  |  |  |
|   | 1.1.2 Prolate $I_3 < I_1$                              |    |  |  |  |  |
| 2 | Euler Angles                                           |    |  |  |  |  |
| 3 | The Symmetrical Top                                    |    |  |  |  |  |
| 4 | Course Summary                                         |    |  |  |  |  |
|   | 4.1 Gravity & Non-Inertial Coördinates                 | 8  |  |  |  |  |
|   | 2 Lagrangian Mechanics                                 |    |  |  |  |  |
|   | 8 Tensors                                              |    |  |  |  |  |
|   | Inertia Tensor                                         |    |  |  |  |  |
|   | 4.5 Rigid Body Motion                                  | 10 |  |  |  |  |
|   | 4.5.1 Euler's Equations                                | 10 |  |  |  |  |
|   | 4.5.2 Euler Angles                                     | 10 |  |  |  |  |
| A | Appendix: Correspondence to Class Lectures             | 11 |  |  |  |  |

<sup>\*</sup>Copyright 2004, John T. Whelan, and all that

## 1 Euler's Equations

Now consider how a rigid body actually moves  $\rightarrow$  Chapter 11.

Total angular momentum  $\vec{L} = \overleftrightarrow{I} \cdot \vec{\omega}$  for the body is because

$$\frac{d\vec{L}}{dt} = \vec{N} \tag{1.1}$$

(where  $\vec{N}$  is the total external torque) just as

$$\frac{d\vec{P}}{dt} = \vec{F} \tag{1.2}$$

(where  $\vec{F}$  is the total external force).

In an inertial coördinate system the body will in general change its orientation and the components of  $\overrightarrow{I}$  will change.

To simplify the equation of motion for  $\vec{\omega}$ , analyze in a rotating basis co-moving with the body; then choose the axes to point along the principal axes of inertia sothat  $\vec{e}'_i = \hat{u}_i$ . Then

$$I'_{xx} = I_1 \tag{1.3a}$$

$$I'_{yy} = I_1 \tag{1.3b}$$

$$I'_{zz} = I_1 \tag{1.3c}$$

and the off-diagonal components vanish. This means

$$\vec{L} = \overleftrightarrow{I} \cdot \vec{\omega} = \sum_{i=1}^{3} L_i' \vec{e}_i' = \sum_{i=1}^{3} \sum_{j=1}^{3} I_{ij}' \omega_j' \vec{e}_i' = \sum_{i=1}^{3} I_i \omega_i' \vec{e}_i'$$

$$(1.4)$$

Now since the basis  $\{\vec{e}_i'\}$  is rotating,

$$\vec{N} = \frac{d\vec{L}}{dt} = \frac{d'\vec{L}}{dt} + \vec{\omega} \times \vec{L}$$
 (1.5)

where

$$\frac{d'\vec{L}}{dt} = \sum_{i=1}^{3} \frac{dL'_i}{dt} \vec{e}'_i \tag{1.6}$$

is the usual vector made up of the time derivatives of the components of a vector in the rotating coördinate system.

Note that as long as the primed basis vectors are co-rotating with the rigid body,

$$\frac{d'\overrightarrow{I}}{dt} = \sum_{i=1}^{3} \sum_{j=1}^{3} \frac{dI'_{ij}}{dt} \vec{e}'_{i} \vec{e}'_{j}$$

$$\tag{1.7}$$

which means that

$$\vec{N} = \overleftrightarrow{I} \cdot \frac{d'\vec{\omega}}{dt} + \vec{\omega} \times \overleftrightarrow{I} \cdot \vec{\omega}$$
 (1.8)

Looking at the x' component in detail, we have

$$N_x' = I_1 \frac{\omega_x'}{dt} + (\omega_y' L_z' - \omega_z' L_y') = I_1 \frac{\omega_x'}{dt} + (I_3 \omega_y' \omega_z' - I_2 \omega_z' \omega_y')$$
(1.9)

Things work out similarly for the y' and z' components, and we have

$$N_x' = I_1 \frac{\omega_x'}{dt} + (I_3 - I_2)\omega_y' \omega_z'$$
 (1.10a)

$$N'_{y} = I_{2} \frac{\omega'_{y}}{dt} + (I_{1} - I_{3})\omega'_{x}\omega'_{z}$$
(1.10b)

$$N'_{z} = I_{3} \frac{\omega'_{z}}{dt} + (I_{2} - I_{1})\omega'_{x}\omega'_{y}$$
(1.10c)

These are called *Euler's Equations*. Symon writes this as his equation (11.7), but seems to have forgotten he's talking about the components in the coördinate system co-rotating with the body (since he calls the components of  $\vec{\omega}$  simply  $\{\omega_1, \omega_2, \omega_3\}$  rather than  $\{\omega'_x, \omega'_y, \omega'_z\}$ .

Note that if thee is no external torque, the components of  $\vec{\omega}$  in the body system can still change, if the inertia tensor is not isotropic (e.g., if  $I_1 \neq I_2$ ).

#### 1.1 Free Precession of a Prolate or Oblate Object

For example, consider the case where  $\vec{N} = \vec{0}$  and  $I_1 = I_2 \neq I_3$ . Examples of this would be a spheroid (an ellipsoid with two equal axes) or a square prism.

Euler's equations become

$$\dot{\omega}_x' = \frac{I_2 - I_3}{I_1} \omega_y' \omega_z' = \frac{I_1 - I_3}{I_1} \omega_y' \omega_z'$$
(1.11a)

$$\dot{\omega}_y' = \frac{I_3 - I_1}{I_1} \omega_x' \omega_z' \tag{1.11b}$$

$$\dot{\omega}_z' = 0 \tag{1.11c}$$

So  $\omega'_z$  is a constant and

$$\Omega = \frac{I_3 - I_1}{I_1} \omega_z' \tag{1.12}$$

is a constant frequency, in terms of which the equations for  $\dot{\omega}_x'$  and  $\dot{\omega}_y'$  become

$$\dot{\omega}_x' = -\Omega \omega_y' \tag{1.13a}$$

$$\dot{\omega}_y' = \Omega \omega_x' \tag{1.13b}$$

This is not the most difficult system of ordinary differential equations in the world. The general solution is

$$\omega_x' = A\cos(\Omega t + \delta) \tag{1.14a}$$

$$\omega_y' = A\sin(\Omega t + \delta) \tag{1.14b}$$

where A and  $\delta$  are constants chosen to match the initial conditions.

Let's visualize what's happening in the two cases:

#### 1.1.1 Oblate $I_3 > I_1$

Then

$$\beta = \frac{\Omega}{\omega_z'} > 0 \tag{1.15}$$

Now, since

$$\omega \cdot \omega = {\omega_x'}^2 + {\omega_y'}^2 + {\omega_z'}^2 = A^2 + {\omega_z'}^2 = \text{constant}$$
(1.16)

and  $\frac{d\vec{L}}{dt} = \vec{0}$  the lengths of the vectors  $\vec{\omega}$  and  $\vec{L}$  don't change although their components in one or more bases can.

The components of  $\vec{L}$  along the body axes are

$$L_x' = I_1 \omega_x' = I_1 A \cos(\Omega t + \delta) \tag{1.17a}$$

$$L'_{x} = I_{1}\omega'_{x} = I_{1}A\cos(\Omega t + \delta)$$

$$L'_{y} = I_{1}\omega'_{y} = I_{1}A\sin(\Omega t + \delta)$$
(1.17a)
(1.17b)

$$L_z' = I_3 \omega_z' \tag{1.17c}$$

So if you look at the components in along the primed axes ("in the body frame")  $\vec{L}$  and  $\vec{\omega}$ appear to precess about a "fixed" z' axis with and angular frequency  $\Omega = \frac{I_3 - I_1}{I_1} \omega_z'$ . Assuming  $\omega_z'>0$  and taking a snapshot at an instant when  $\omega_x'$  (and thus  $L_x'$ ) happens to vanish, it looks like this:



Of course, in the inertial frame, it is  $\vec{L}$  that is fixed  $(\frac{d\vec{L}}{dt} = \vec{N} = \vec{0})$  and  $\vec{\omega}$  and  $\hat{z}'$  both precess about it.



This is why there's no permanent South Pole: The Earth's rotation is not quite aligned with its body axis, so it "wobbles". The South Pole is where the direction of  $\omega$  intersects the Earth, and that is precessing.

#### 1.1.2 Prolate $I_3 < I_1$

Then

$$\frac{\Omega}{\omega_z'} < 0 \tag{1.18}$$

and the precession goes the other way.



This is why, when a football is not thrown in a tight spiral, you see the nose spin.

## 2 Euler Angles

Three numbers are needed to describe the orientation of a rigid bodyin space. For example, if you consider the orthonormal unit vectors  $\hat{u}_1$ ,  $\hat{u}_2$ ,  $\hat{u}_3$  associated with the principal axes, specifying  $\hat{u}_1$  takes two parameters (it's a vector, but you know  $|\hat{u}_1| = 1$ ), then specifying  $\hat{u}_2$ , which lies in planeperpendicular to  $\hat{u}_1$ , requires one, and then you're done because  $\hat{u}_3 = \hat{u}_1 \times \hat{u}_2$ .

There are *lots* of different conventions on what those numbers are, e.g., in aeronautics one uses yaw, pitch, and roll. Our convention (i.e., Symon's, but it's a good one) is as follows. (See Figure 11.4 in Symon.) Rather than build up a mondo rotation matrix out of three rotations, focus on the two sets of axes  $\hat{x}$ ,  $\hat{y}$ ,  $\hat{z}$  and  $\hat{u}_1 = \hat{x}'$ ,  $\hat{u}_2 = \hat{y}'$ ,  $\hat{u}_3 = \hat{z}'$ . In particular, treat the "z" axes preferentially, and look at the equatorial planes of the two systems.

- $\theta$  is the angle between the z and z' axes, i.e.,  $\hat{z} \cdot \hat{u}_3 = \cos \theta$ ;
- $\phi$  completes the specification of  $\hat{u}_3$ ;
- $\psi$  locates  $\hat{u}_1$  and  $\hat{u}_2$  via a rotation about  $\hat{u}_3$ .

Now, we might like  $\theta$  and  $\phi$  to be the spherical coördinate angles corresponding to the direction  $\hat{u}_3$ , but the convention used actually makes those angles  $\theta$  and  $\phi - \frac{\pi}{2}$ .

Convention/Definition: The two equatorial planes (perpendicular to  $\hat{z}$  and perpendicular to  $\hat{u}_3$ , respectively) intersect in a line called the *line of nodes* (which is perpendicular to both  $\hat{z}$  and  $\hat{u}_3$ ).  $\phi$  is the angle from the x axis to the line of nodes. It is useful to define an "intermediate" set of axes  $\hat{\xi}$ ,  $\hat{\eta}$ ,  $\hat{\zeta}$ , where  $\hat{\zeta} = \hat{u}_3$ ,  $\hat{\xi}$  points along the line of nodes, and  $\hat{\eta} = \hat{\zeta} \times \hat{\xi}$ .

We still have to specify the orientation of  $\hat{u}_2$  and  $\hat{u}_3$ , and we do that by saying  $\psi$  is the angle (around the z' axis) from the line of nodes to  $\hat{u}_1$ .

Look at selected cross-sections...



To rotate  $\hat{x}$ ,  $\hat{y}$ ,  $\hat{z}$  into  $\hat{u}_1$ ,  $\hat{u}_2$ ,  $\hat{u}_3$ :

- 1. Rotate  $\phi$  about  $\hat{z}$
- 2. Rotate  $\theta$  about  $\hat{\xi}$
- 3. Rotate  $\psi$  about  $\hat{\zeta} = \hat{u}_3$

Of course, what we really want is  $\vec{\omega}$  in terms of  $\dot{\theta}$ ,  $\dot{\phi}$ , and  $\dot{\psi}$ .

Symon proves that if  $\hat{x}^*$ ,  $\hat{y}^*$ ,  $\hat{z}^*$  are rotating relative to  $\hat{x}$ ,  $\hat{y}$ ,  $\hat{z}$  at angular velocity  $\vec{\omega}_1$  and  $\hat{x}'$ ,  $\hat{y}'$ ,  $\hat{z}'$  are rotating relative to  $\hat{x}^*$ ,  $\hat{y}^*$ ,  $\hat{z}^*$  at angular velocity  $\vec{\omega}_2$  then  $\hat{x}'$ ,  $\hat{y}'$ ,  $\hat{z}'$  are rotating relative to  $\hat{x}$ ,  $\hat{y}$ ,  $\hat{z}$  at angular velocity  $\vec{\omega}_1 + \vec{\omega}_2$ . Basically, this is a manifestation of the fact that infinitesimal rotations add like vectors.

This means

$$\vec{\omega} = \dot{\theta}\hat{\xi} + \dot{\phi}\hat{z} + \dot{\psi}\hat{u}_3 \tag{2.1}$$

Now, to attach lots of problems, we want to use a Lagrangian method, which means finding  $T = \frac{1}{2}\vec{\omega} \cdot \overrightarrow{I} \cdot \vec{\omega}$  in terms of  $\theta$ ,  $\phi$ ,  $\psi$ ,  $\dot{\theta}$ ,  $\dot{\phi}$ ,  $\dot{\psi}$  so we should try to resolve

$$\vec{\omega} = \omega_1' \hat{u}_1 + \omega_2' \hat{u}_2 + \omega_3' \hat{u}_3 \tag{2.2}$$

since

$$T = \frac{1}{2}\vec{\omega} \cdot \vec{\omega} = \frac{1}{2}I_1{\omega_1'}^2 + \frac{1}{2}I_2{\omega_2'}^2 + \frac{1}{2}I_3{\omega_3'}^2$$
 (2.3)

So, look at the geometry in order to get  $\hat{\xi}$  and  $\hat{z}$  in terms of the basis vectors pointing along principal axes of inertia.

$$\hat{\xi} = \hat{u}_1 \cos \psi - \hat{u}_2 \sin \psi \tag{2.4a}$$

$$\hat{\eta} = \hat{u}_1 \sin \psi + \hat{u}_2 \cos \psi \tag{2.4b}$$

$$\hat{\zeta} = \hat{u}_3 \tag{2.4c}$$

which means

$$\hat{z} = \hat{\eta}\sin\theta + \hat{\zeta}\cos\theta = \hat{u}_1\sin\theta\sin\psi + \hat{u}_2\sin\theta\cos\psi + \hat{u}_3\cos\theta \tag{2.5}$$

Putting it together,

$$\vec{\omega} = (\dot{\theta}\cos\psi + \dot{\phi}\sin\theta\sin\psi)\hat{u}_1 + (-\dot{\theta}\sin\psi + \dot{\phi}\sin\theta\cos\psi)\hat{u}_2 + (\dot{\phi}\cos\theta + \dot{\psi})\hat{u}_3 \tag{2.6}$$

In general,

$$T(\theta, \phi, \psi, \dot{\theta}, \dot{\phi}, \dot{\psi}) = \frac{1}{2} I_1(\dot{\theta}\cos\psi + \dot{\phi}\sin\theta\sin\psi)^2 + \frac{1}{2} I_2(-\dot{\theta}\sin\psi + \dot{\phi}\sin\theta\cos\psi)^2 + \frac{1}{2} I_3(\dot{\phi}\cos\theta + \dot{\psi})^2$$
(2.7)

This has cross terms involving  $\dot{\theta}\dot{\phi}$  and  $\dot{\phi}\dot{\psi}$ , but if  $I_1 = I_2$ , the  $\dot{\theta}\dot{\phi}$  terms cancel, and it simplifies somewhat. Then

$$T = \frac{1}{2}I_1\dot{\theta}^2 + \frac{1}{2}I_1\sin^2\theta\dot{\phi}^2 + \frac{1}{2}I_3(\dot{\phi}\cos\theta + \dot{\psi})^2 \qquad \text{(when } I_1 = I_2\text{)}$$
 (2.8)

This is the setup for the *symmetrical top* 

## 3 The Symmetrical Top

One of the classic rigid body problems.

Consider a "solid of rotation" which has rotational symmetry about a symmetry axis which we call  $\hat{u}_3$ . From the geometry,  $\hat{u}_3$  is a principal axis of inertia, and  $I_1 = I_2$ . Also, the center of mass is on the symmetry axis. Let  $\ell$  be the distance of the center of mass from the tip of the top. Describe the situation where one point (the aforementioned tip) is fixed, in a Lagrangian formalism.

The generalized coördinates are the Euler angles  $\theta$ ,  $\phi$ ,  $\psi$ . From Section 2, we know

$$T = \frac{1}{2}I_1\dot{\theta}^2 + \frac{1}{2}I_1\sin^2\theta\dot{\phi}^2 + \frac{1}{2}I_3(\dot{\phi}\cos\theta + \dot{\psi})^2$$
 (3.1)

If the top is moving in a uniform gravitational field in the z direction, with the zero of potential energy defined at the height of the fixed tip, the potential energy is

$$V = \iiint \rho gz \, dx \, dy \, dz = Mg \cdot (z \text{ co\"{o}rd of C.O.M.}) = Mg\ell \cos \theta \tag{3.2}$$

SO

$$L = \frac{1}{2}I_1\dot{\theta}^2 + \frac{1}{2}I_1\sin^2\theta\dot{\phi}^2 + \frac{1}{2}I_3(\dot{\phi}\cos\theta + \dot{\psi})^2 - Mg\ell\cos\theta$$
 (3.3)

We can analyze the motion using symmetries.

$$\frac{\partial L}{\partial \phi} = 0 = \frac{\partial L}{\partial \psi} \tag{3.4}$$

so  $\phi$  and  $\psi$  are ignorable coördinates and  $p_{\phi}$  and  $p_{\psi}$  are conserved. Also

$$\frac{\partial L}{\partial t} = 0 \tag{3.5}$$

so H will be conserved.

The conserved conjugate momenta are

$$p_{\phi} = \frac{\partial L}{\partial \dot{\phi}} = I_1 \sin^2 \theta \dot{\phi} + I_3 \cos \theta (\dot{\psi} + \dot{\phi} \cos \theta)$$
 (3.6a)

$$p_{\psi} = \frac{\partial L}{\partial \dot{\psi}} = I_3(\dot{\psi} + \dot{\phi}\cos\theta) \tag{3.6b}$$

For reference,

$$p_{\theta} = \frac{\partial L}{\partial \dot{\theta}} = I_1 \dot{\theta} \tag{3.6c}$$

The Hamiltonian is

$$H = p_{\theta}\dot{\theta} + p_{\phi}\dot{\phi} + p_{\psi}\dot{\psi} - L$$

$$= I_{1}\dot{\theta}^{2} + I_{1}\sin^{2}\theta\dot{\phi}^{2} + I_{3}\dot{\phi}\cos\theta(\dot{\psi} + \dot{\phi}\cos\theta) + I_{3}\dot{\psi}(\dot{\psi} + \dot{\phi}\cos\theta)$$

$$- \frac{1}{2}I_{1}\dot{\theta}^{2} - \frac{1}{2}I_{1}\sin^{2}\theta\dot{\phi}^{2} - \frac{1}{2}I_{3}(\dot{\phi}\cos\theta + \dot{\psi})^{2} + Mg\ell\cos\theta$$

$$= T + V = E$$
(3.7)

I.e., since the kinetic energy (3.1) is quadratic in the velocities (this time including cross terms) the Hamiltonian is equal to the total energy.

If we make the substitution

$$\dot{\psi} + \dot{\phi}\cos\theta = \frac{p_{\psi}}{I_3} \tag{3.8}$$

(3.6a) becomes

$$p_{\phi} = I_1 \sin^2 \theta \dot{\phi} + p_{\psi} \cos \theta \tag{3.9}$$

And

$$E = \frac{1}{2}I_1\dot{\theta}^2 + \frac{(p_\phi - p_\psi\cos\theta)^2}{2I_1\sin^2\theta} + \frac{p_\psi^2}{2I_3} + mg\ell\cos\theta$$
 (3.10)

which can be analyzed analogous to

$$E = \frac{1}{2}m\dot{x}^2 + V(x) \tag{3.11}$$

or

$$E = \frac{1}{2}m\dot{r}^2 + V_{\text{eff}}(r) \tag{3.12}$$

# 4 Course Summary

- I A. Gravity (Chapter 6)
- B. Moving Coördinate Systems (Sec 7.1-7.4 + tides)
- II C. Lagrangian Mechanics (Sec 9.1-9.10)
- III D. Tensors (Sec 10.1-10.5 Note differences in our notation)
  - E. Rigid Body Motion (Sec 11.1, 11.2, 11.4, [11.5])

## 4.1 Gravity & Non-Inertial Coördinates

See summary from 2004 February 17 (Section 6 of Chapter 7 Notes)

#### Lagrangian Mechanics 4.2

See lightning recap from 2004 March 25 and review from 2004 April 13 (Sections 6-7 of Chapter 9 notes)

#### 4.3 Tensors

Tensor Notation

Matrix Notation

$$\vec{A} = A_x \hat{x} + A_y \hat{y} + A_z \hat{z}$$
 (4.1)  
 $\hat{x} = \hat{e}_1, \quad \hat{y} = \hat{e}_2, \quad \hat{z} = \hat{e}_3$  (4.2)  $\mathbf{A} = \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix}$   $\mathbf{A}^{\mathrm{T}} = \begin{pmatrix} A_x & A_y & A_z \end{pmatrix}$  (4.4)

SO

$$\vec{A} = \sum_{i=1}^{3} A_i \hat{e}_i$$
 (4.3)  $\mathbf{A} = \begin{pmatrix} A_1 \\ A_2 \\ A_3 \end{pmatrix}$   $\mathbf{A}^{\mathrm{T}} = \begin{pmatrix} A_1 & A_2 & A_3 \end{pmatrix}$  (4.5)

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z = \mathbf{A}^{\mathrm{T}} \mathbf{B}$$

$$\tag{4.6}$$

Since this is just a number, the two are equal. Otherwise, we don't talk about equality, but rather correspondence

$$\overrightarrow{A} = A \tag{4.7}$$

$$(\vec{A} \otimes \vec{B}) \cdot \vec{C} = \vec{A}(\vec{B} \cdot \vec{C})$$
 (4.8)  $(\mathbf{A}\mathbf{B}^{\mathrm{T}})\mathbf{C} = \mathbf{A}(\mathbf{B}^{\mathrm{T}}\mathbf{C})$ 

$$(\vec{A} \otimes \vec{B}) \cdot \vec{C} = \vec{A}(\vec{B} \cdot \vec{C}) \qquad (4.8) \qquad (\mathbf{A}\mathbf{B}^{\mathrm{T}})\mathbf{C} = \mathbf{A}(\mathbf{B}^{\mathrm{T}}\mathbf{C}) \qquad (4.9)$$

$$\stackrel{\longleftrightarrow}{T} = \sum_{i=1}^{3} \sum_{j=1}^{3} T_{ij} \hat{e}_{i} \hat{e}_{j} \qquad (4.10)$$

$$\mathbf{T} = \begin{pmatrix} T_{xx} & T_{xy} & T_{xz} \\ T_{yx} & T_{yy} & T_{yz} \\ T_{zx} & T_{zy} & T_{zz} \end{pmatrix} \qquad (4.12)$$

note

$$T_{ij} = \hat{e}_i \cdot \overrightarrow{T} \cdot \hat{e}_j \tag{4.11}$$

 $T_{ij} = \hat{e}_i \cdot \overleftrightarrow{T} \cdot \hat{e}_j$  (4.11) A symmetric matrix has  $\mathbf{T}^{\mathrm{T}} = \mathbf{T}$  i.e.,  $T_{ij} = T_{ji}$ 

A symmetric tensor has  $\overrightarrow{T}^{\mathrm{T}} = \overleftarrow{T}$ .

If T is symmetric, there is always an *orthonormal* basis  $\{\hat{u}_1, \hat{u}_2, \hat{u}_3\}$  such that

$$\overrightarrow{T} = T_1 \hat{u}_1 \otimes \hat{u}_1 + T_2 \hat{u}_2 \otimes \hat{u}_2 + T_3 \hat{u}_3 \otimes \hat{u}_3$$
 (4.13)

 $\hat{u}_i$  is an eigenvector with eigenvalue  $T_i$ , since  $\overleftarrow{T} \cdot \hat{u}_i = T_i \hat{u}_i$ 

#### 4.4 Inertia Tensor

$$\vec{L} = \overleftrightarrow{I} \cdot \vec{\omega} \tag{4.14}$$

where

$$\overrightarrow{I} = \sum_{k=1}^{N} m_k (r_k^2 \overrightarrow{1} - \vec{r}_k \otimes \vec{r}_k)$$
 (4.15)

• Be familiar with derivation

• Be able to construct  $\overleftrightarrow{I}$  from distribution of point masses or

$$\overrightarrow{I} = \iiint (r^2 \overrightarrow{1} - \vec{r} \otimes \vec{r}) \rho(\vec{r}) d^3V$$
 (4.16)

Note! This is a lot like

$$\varphi(\vec{r}) = -\sum_{k=1}^{N} \frac{Gm_k}{|\vec{r} - \vec{r_k}|} \tag{4.17}$$

or

$$\vec{g}(\vec{r}) = -\iiint Gm_k \rho(\vec{r}') \frac{(\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|} d^3V'$$
(4.18)

Would do well to practice this!

Also note

- Rotation of axes to represent same tensor  $\overrightarrow{I}$  in different bases.
- Translation of origin to get different  $\overleftrightarrow{I}_{\mathcal{O}'}$  vs  $\overleftrightarrow{I}_{\mathcal{O}}$

Note the identity

$$\overleftrightarrow{I}_{\mathcal{O}} = \overleftrightarrow{I}_{\mathcal{G}} + M(R^2 \overleftrightarrow{1} - \vec{R} \otimes \vec{R}) \tag{4.19}$$

where  $\vec{R}$  is the position vector of the center of mass  $\mathcal{G}$  with respect to the origin  $\mathcal{O}$ 

Note  $I_{ij} = I_{ji}$  emphalways.

#### THE INERTIA TENSOR IS SYMMETRIC

### 4.5 Rigid Body Motion

#### 4.5.1 Euler's Equations

$$\vec{N} = \frac{d\vec{L}}{dt} = \frac{d'\vec{L}}{dt} + \vec{\omega} \times \vec{L} = \frac{d'(\vec{I} \cdot \vec{\omega})}{dt} + om\vec{e}ga \times \overrightarrow{I} \cdot L$$
 (4.20)

where  $\vec{N}$  is the external torque. If the primed coördinate axes are chosen to move and rotate with the rigid body, and line up with the body axes, then  $I'_{ij} = \delta_{ij}I_i$  for all time.

Be familiar with the derivation and consequences.

- If  $I_1 = I_2 \neq I_3$ , then  $\vec{\omega}$  and  $\vec{L}$  precess around  $\hat{u}_3$  in the body frame while  $\hat{u}_3$  and  $\vec{\omega}$  precess around  $\vec{L}$  in an inertial frame.
- If all the eigenvalues are different, the body can precess around the axis with the highest or lowest eigenvalue, but not the middle one (you showed this on the homework).

#### 4.5.2 Euler Angles

- Be able to do rotational manipulations
- Be acquainted with the symmetrical top as an application

# A Appendix: Correspondence to Class Lectures

| Date        | Sections | Pages | Topics                            |
|-------------|----------|-------|-----------------------------------|
| 2004 Apr 27 | 1        | 2–5   | Euler's Equation; Free Precession |
| 2004 Apr 27 | 2        | 5-7   | Euler Angles                      |
| 2004 Apr 29 | 3        | 7–8   | The Symmetric Top                 |
| 2004 May 4  | 4        | 8-10  | Course Summary                    |