Physics A301: Classical Mechanics 11

Problem Set 2

Assigned 2004 January 22
Due 2004 January 29

Show your work on all problems! Be sure to give credit to any collaborators, or outside
sources used in solving the problems.
1 Deriving Gauss’s Law

The point of this problem is to sketch out a demonstration that Gauss’s Law holds for a point mass
of mass M, which generates the gravitational field

g(r) = ——5-7 (1.1)

ﬁ:f%Jré%%Jrgimln@a%, (1.2)
and the partial derivatives [see Symon’s (3.99)] of # which can be summarized as
df = 6df + ¢sinfdg (1.3)
along with the product rule, DERIVE the formula for the divergence
V- [A(r)i] (1.4)

in terms of A, and dj%. (You can use the expression on page 103 of Symon to check your
result, but should not assume it.)

b) Show that V - § vanishes for the field (1.1), as long as r # 0. Use this to show that the flux
of g through any closed surface not enclosing the point mass at the origin is zero.

c) Consider a sphere of radius a centered at the origin. Calculate directly the flux of the vector
field (1.1) through this sphere, and show it is equal to —47GM.



2 Galilean Transformations

Consider a system of two particles, of masses m; = m and my = 2m, connected by a spring of
spring constant k = 2mw?/3. If there are no other forces, the equations of motion should be

myr = —k(7) — 72) (2.1a)
a) Show that
, 0.
x1(t) = (sinwt To(t)= — 5 sin wt (2.2a)
y1(t) = —20 cos wt yo(t) =L coswt (2.2b)
z1(t) =0 25(t)=0 (2.2¢)

is a solution the to the equations of motion (2.1).

b) Now consider the same system viewed in a moving codrdinate system whose origin O* is

offset from the old origin O by a displacement vector h = Btz where [ is a constant speed.
Transform the trajectory (2.2) into these new codrdinates to obtain z(t), x3(t), yi(t), etc.

c) Show that the trajectory you got in part b) satisfies the equations of motion as well, i.e., that

W= k(P — ) (2.3a)

I
moty = —k (75 — 77) (2.3b)

3 Infinitesimal Rotations

In class and in the book, we considered geometrically the changes dz*, dy*, and dz* in the basis
vectors ¥, ¢*, and 2* that occur when the axes are rotated through an infinitesimal angle df = @ dt.
In this problem, you’ll show that db really is a vector, in that it can be constructed out of three
components along the basis vectors.

In this problem, we’ll make use of rotation matrices

1 0 0 cosae 0 —sina cosae sina 0
Ri(a) =10 cosa sina]|; Ra(a)= 0 1 0 : Rg(a)=| —sina cosa 0
0 —sina cosa sinaw 0 cosa 0 0 1

which describe the effects of rotating the basis vectors through an angle « (counter-clockwise) about
the x, y, and z axes, respectively.

a) The figure below verifies that if the “new” basis is obtained from the “old” basis by rotating
through an angle of o about the z axis,

ponew CoSs av i.old + sin o gold i.old
gV | = | —sina 2 + cosa g | = Ra(a) | g1 (3.1)
Znew 201d 2old

By drawing similar pictures, show that similar equations hold for rotations about the z and
Y axes.



b)

i.new
sinav (etc)

L,%old

Consider the infinitesimal rotation matrices Ry(df,), Ra(df,), and Rs(df,). By using the
Taylor expansions for sine and cosine (or equivalently the small angle formula), write each of
these matrices to first order in the infinitesimal angles (so discard all terms proportional to
the second or higher powers in df,, df,, and df,).

If we apply the three infinitesimal rotations in succession, rotating through and angle df,
about the x axis, then df, about the y axis, then df, about the z axis, the rotation matrix
which will take our initial axes to the final ones is

—

R(d0) = Ry(df.)Ry(d6,) Ry (d6,) (3.2)

Calculate the elements of the matrix R(d@), again discarding any expression which is the
product of two infinitesimal quantities. Would your answer have been different if you had
multiplied the three matrices in a different order?

Show that the change in the basis vectors

di e i
dy | =R(d0) | 9] = | ¥ (3:3)
dz z 2

due to this combined rotation is the same as we derived geometrically for an infinitesimal
rotation through df = ©d0, + ydb, + 2d0., i.e., dt = df x z, etc.



