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1 Preamble

So far, we’ve looked at the role of energy (via first law of thermodynamics and the equipar-
tition theorem) and the interrelationship among temperature, pressure, and volume (in the
form of an equation of state such as the ideal gas law). Now we consider a new topic, the
second law of thermodynamics, which explains why some processes, such as the flow of heat
from high to low temperatures, occur spontaneously in one direction but not in the other.
(This is actually kind of a deep question, since most of the fundamental laws of physics
are time-reversal invariant. The source of the “thermodynamic arrow of time”, defined by
the spontaneous flow of heat or more generally by the tendency of the total entropy of the
universe to increase, needs to be explained.)

We’ll see that what’s actually happening is that violations of the second law aren’t
impossible, just phenomenally unlikely, and the underlying reason will be that for a broad
description of a macroscopic system with a few variables (P , T , U , etc.), most of the details
of the microscopic motion (~r1, ~v1, ~r2, ~v2, . . .~rN , ~vN) are irrelevant. This is a good thing,
because for a typical macroscopic system N ∼ 1023.

2 Counting States

In conjunction with this topic, you should read Sections 2.1 and 2.2 of Schroeder.
We refer to a description of the system in terms of its macroscopic properties as a

macrostate. If the macroscopic variables are the same for two systems, they are in the
same macrostate, even if some of the microscopic details are different. The microstate of a
system is the detailed description of every little piece of the system. In general, a system
in a given macrostate can be in any of many many microstates. The number of microstates
corresponding to a macrostate is called its multiplicity, which we traditionally write as Ω.

2.1 Example: Two-State Systems

We can make these definitions more concrete with a simple idea, counting up the number of
possible outcomes when tossing a bunch of coins.

• Toss one coin: there are 2 possible outcomes: heads (H) and tails (T)

• Toss two coins: there are 2× 2 = 4 possible outcomes (if we keep track of which coin
is which: HH, HT, TH, and TT.

• Toss three coins: there are 2× 2× 2 = 8 possible outcomes:
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• Toss N coins: there are 2× 2× . . .× 2︸ ︷︷ ︸
N

= 2N possible outcomes.

For this system, each possible sequence of heads and tails is a different microstate; there
are 2N microstates. The different macrostates are labelled by the total number of heads and
tails.

For example, if N = 2, the microstates and their corresponding macrostates are

HH 2H Ω(2H,0T) = 1

HT
1H Ω(1H,1T) = 2

TH

TT 0H Ω(0H,2T) = 1

The macrostate with one head and one tail corresponds to two different microstates and
therefore has a multiplicity of 2.

It’s also useful to call the total number of microstates (which is the sum of the multiplic-
ities of all the macrostates) Ω(all). In this case, Ω(all) = 2N = 4.

Now, if the coin is fair, each microstate is equally probably, so the odds of getting n
heads in N tosses are

Ω(nH, [N − n]T)

Ωall
(2.1)

The multiplicity Ω(nH, [N−n]T) can also be called Ω(N, n) for short. Again, in the example
of N = 2, the probabilities are

2H, 0T odds=1
4
=25%

1H, 1T odds=2
4
=50%

0H, 2T odds=1
4
=25%

To figure out Ω(N, n) in general, we need to count the number of ways to pick n coins
out of N to land heads up.

• If n = 0, there’s only one way for all the coins to be tails up, so Ω(N, 0) = 1.

• If n = 1, we can pick any of the N coins to be the one that’s heads up, so Ω(N, 1) = N .

• Now consider n = 2. There are N choices for the first coin and N − 1 for the second.
But we could have chosen the same two coins in either order, and we don’t want to
count for example #2 and #5 being heads-up as a different microstate than #5 and
#2. So we need to divide by 2 to avoid double-counting:

Ω(N, 2) =
N(N − 1)

2
(2.2)

• Look at one more specific case, n = 3. We have N choices for the first heads-up coin,
n− 1 for the second and n− 2 for the third. But there are 3× 2 = 6 different orders
in which the same three coins could be picked. So

Ω(N, 2) =
N · (N − 1) · (N − 2)

3 · 2
(2.3)
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• In the general case, we have N · (N − 1) · . . . · (N − n− 1) ways of picking n coins, but
n · (n− 1) · . . . · 2 different orders in which the same n coins could be picked, so

Ω(N, n) =
N · (N − 1) · . . . · (N − n+ 1)

n · (n− 1) · . . . · 2
(2.4)

We can write this more compactly by using a new notation. The factorial of n, written n!
and pronounced “n-factorial”, is the product of all positive integers up to n. [Note that by
definition 0! = 1, which ensures that (n + 1)! = (n + 1)n! for any non-negative integer n.]
This is written

n! = 1 · 2 · 3 · . . . · (n− 1) · n (2.5)

which is just the denominator of our multiplicity:

Ω(N, n) =
N · (N − 1) · . . . · (N − n+ 1)

n!
(2.6)

Now, the numerator is not quite N ! because it doesn’t go all the way down to 1:

N ! = N · (N − 1) · . . . · (N − n+ 1) · (N − n) · (N − n− 1) · . . . · 2 · 1︸ ︷︷ ︸
missing part=(N−n)!

. (2.7)

So
N !

(N − n)!
= N · (N − 1) · . . . · (N − n+ 1) (2.8)

which means

Ω(N, n) =
N !

n!(N − n)!
. (2.9)

In fact, this combination of factors, the number of different ways of choosing n objects out
of N , is so common that it has its own notation(

N

n

)
=

N !

n!(N − n)!
(2.10)

which is pronounced “N choose n”.
The coin-flipping example seems kind of artificial, but as Schroeder describes, it’s actually

applicable to a system called a 2-state paramagnet. We’ll look at that system more later on,
but for now, let’s turn to a physically more interesting “toy model”.

2.2 The Einstein Model of a Solid

This toy model, which Schroeder uses to develop a lot of the statistical underpinnings of
thermodynamics, is called the Einstein solid. This models a solid as a system of N harmonic
oscillators. The physical picture is that each atom sits at a position in a crystal lattice,
but it can vibrate about that location in three dimensions, and those oscillations can be
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approximated as simple harmonic motion. Note that this means each atom corresponds to
three harmonic oscillators,1 one in each direction, which we can see from the potential energy

V =
1

2
ksx

2 +
1

2
ksy

2 +
1

2
ksz

2 (2.11)

where ks is the spring constant.
From quantum mechanics, we know that a harmonic oscillator can store energy

En =

(
n+

1

2

)
~ω0 n = 0, 1, 2, . . . (2.12)

where ~ = h
2π

is the reduced Planck’s constant and ω0 =
√
ks/m is the natural frequency of

the oscillator.
Beyond the zero-point energy of ~ω0/2 per oscillator, each oscillator can store any non-

negative integer number of “quanta” of energy. A microstate of this system is defined by the
number of quanta stored in each oscillator. A macrostate is defined by the total number of
quanta (a non-negative integer which we call q) stored in all the oscillators combined.

To see how to count states and construct the multiplicity Ω(N, q), consider the case
N = 2:

#1 #2
0 0 q = 0 Ω(2, 0) = 1

1 0
q = 1 Ω(2, 1) = 2

0 1

2 0
q = 2 Ω(2, 2) = 31 1

0 2

continuing, we would find Ω(2, 3) = 4, etc., which can be summarized as Ω(2, q) = q+ 1. We
can also note that the N = 1 case is quite simple, since there’s only one place to put all the
quanta of energy, so Ω(1, q) = 1.

The combinatorics for the general case are equivalent to the problem of how to arrange
q marbles in N bins. One could attack this head-on by dropping the marbles one at a time
and asking how many places there are to put each of them, but a little bit of fancy footwork
would be necessary to get it right. (In particular, to account for the different arrangements
of the q marbles.) It turns out to be clearer to focus on the “dividers” between the bins. If
there are N bins, there are N − 1 dividers between them. Placing the q marbles into the N
bins is equivalent to lining up the marbles and then laying down the dividers between them.
We’ll initially treat the N − 1 dividers as different and then divide by N − 1 to account for
rearrangements of the dividers.

When we lay down the first divider, there are q + 1 places to put it, since it could be
in between any of the marbles, or at either end of the line. When we lay down the second

1This leaves us in the unfortunate notational situation that N does not refer to the number of atoms or
molecules in the system, which it usually does.
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divider, there are q marbles plus a divider, so q+ 1 objects and thus q+ 2 different places to
put the divider. When we lay down the third divider, there are q + 2 objects already in the
arrangment, so q + 3 places to put it. This continues for all N − 1 dividers, so the number
of ways to lay down all of them is

(q + 1) · (q + 2) · . . . · (q +N − 1)︸ ︷︷ ︸
N − 1 factors

=
(q +N − 1)!

q!
(2.13)

However, we have counted as different each rearrangement of the dividers, so we have to
divide by N − 1 to account for that. This makes the multiplicity

Ω(N, q) =
(q +N − 1)!

q!(N − 1)!
=

(
q +N − 1

q

)
(2.14)

Schroeder derives this in a slightly cuter way by pointing out that the multiplicity is the
number of ways of choosing q marbles and N − 1 dividers out of q +N − 1 objects.

3 Interacting Systems

In conjunction with this topic, you should read Section 2.3 of Schroeder.
We’ve talked about the idea that if every microstate is equally likely, the probability of

being in a given macrostate is its multiplicity divided by the total number of microstates.
We also have a formula (2.14) for the multiplicity of a macrostate in a given toy model,
namely the Einstein solid. But we can’t just look at a single Einstein solid and talk about
the probability of it having a given number of quanta of energy stored in it. For one thing,
the number of all microstates is infinite. Also, more importantly, conservation of energy
prevents an isolated solid from moving from one macrostate to another.

What we can do is consider two Einstein solids in contact with each other. The system
is described by the number of oscillators: NA in the first solid and NB in the second solid. A
macrostate of the system is then labelled by the number of quanta of energy in each solid: qA
in the first solid and qB in the second solid. For each of the ΩA = Ω(NA, qA) ways to arrange
the qA quanta of energy in the first solid, any of the ΩB = Ω(NB, qB) ways of arranging the
qB quanta in the second solid is possible. So the overall multiplicity, the total number of
microstates which have qA energy units in the first solid and qB in the second, is

Ωtot = Ω(qA, qB) = ΩA(qA)ΩB(qB) (3.1)

If the two solids can only interact with each other, and are isolated from the rest of the
universe, the total amount of energy will remain constant:

qA + qB = qtot = constant (3.2)

Then we can say what the probability is that there will be exactly qA quanta of energy in
the first solid (in which case there must be qtot − qA in the second):

P (qA) =
ΩA(qA) ΩB(qtot − qA)∑
q′A

ΩA(q′A) ΩB(qtot − q′A)
(3.3)
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The denominator is just the total number of microstates with a total of qtot quanta of total
energy stored in the solids. Note that this is the same as the multiplicity of the state of an
Einstein solid with qtot quanta of energy stored in NA +NB oscillators, i.e.,(

qtot +NA +NB − 1

qtot

)
(3.4)

For a small-scale problem, say two Einstein solids with 3 oscillators each (NA = 3 = NB),
sharing 4 quanta of energy between them (qtot = 4), we can work out the multiplicities of
the various macrostates by hand:

qA ΩA qB ΩB Ωtot = ΩAΩB P (qA) = Ωtot

126

0 1 4 15 15 11.9%
1 3 3 10 30 23.8%
2 6 2 6 26 28.6%
3 10 1 3 30 23.8%
4 15 0 1 15 11.9%

We see that for these two identical solids, the most likely arrangement of energy is half in
one, half in the other. If we up the size of the system to NA = 50 = NB and qtot = 20,
we can still handle it with the aid of a spreadsheet program. (See Figure 1.) Note that
for this larger system, the most likely macrostate is still with half the energy in each solid,
but now the probability distribution, when viewed on the scale of the range of possible qA
values, is sharper. While the probability of the most likely macrostate has gone down from
29% to 16%, the probability that qA is between 3

8
and 5

8
of qtot has gone up from 29% to

69%. (That’s the significance of the “coarse prob” column, which adds up the probabilities
of the macrostates of the larger system which come closest to each macrostate of the smaller
system.)

Schroeder gives an example of an even larger system, with NA = 300, NB = 200,
and qtot = 100, where the probability is even more sharply peaked about the most likely
macrostate.

So if the two solids start out with a distribution of energy away from the peak of Ωtot, and
we let them exchange energy for a while, so that each allowed microstate is equally likely,
they’re statistically very likely to end up in a macrostate near the peak of the probability
distribution. This is a manifestation of the Second Law of Thermodynamics, seen as a
probabilistic statement: It’s very unlikely that a system will end up in a state much different
from the state of maximum multiplicity.

For a real macroscopic system, the probability distribution is very sharp indeed, since NA,
NB, and qtot are all around 1023. But before we can make a quantitative statement about this,
we have to attack a mathematical challenge. The multiplicity expressions involve factorials,
and how in the world would we take the factorial of a number as large as 1023, which is
defined as the product of the first 1023 positive integers. Even if you could multiply a billion
numbers per second, it would still take 1014 seconds ≈ 3 million years. And the answer would
be far too long to write on all the paper in the world.
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Sheet1

Page 1

qA OmegaA qB OmegaB Omegatot Prob Coarse Prob 4*qA/qtot

0 1 20 1.156E+17 1.1563E+17 0.0005% 0.0559% 0

1 50 19 3.352E+16 1.6758E+18 0.0068% 0.2

2 1275 18 9.365E+15 1.194E+19 0.0486% 0.4

3 22100 17 2.516E+15 5.5602E+19 0.2265% 0.6

4 292825 16 6.480E+14 1.8976E+20 0.7729% 0.8

5 3162510 15 1.595E+14 5.0448E+20 2.0548% 15.3167% 1

6 28989675 14 3.739E+13 1.0838E+21 4.4145% 1.2

7 231917400 13 8.308E+12 1.9268E+21 7.8480% 1.4

8 1.652E+09 12 1.742E+12 2.8786E+21 11.7246% 1.6

9 1.065E+10 11 3.427E+11 3.6494E+21 14.8639% 1.8

10 6.283E+10 10 6.283E+10 3.9474E+21 16.0778% 69.2548% 2

11 3.427E+11 9 1.065E+10 3.6494E+21 14.8639% 2.2

12 1.742E+12 8 1.652E+09 2.8786E+21 11.7246% 2.4

13 8.308E+12 7 231917400 1.9268E+21 7.8480% 2.6

14 3.739E+13 6 28989675 1.0838E+21 4.4145% 2.8

15 1.595E+14 5 3162510 5.0448E+20 2.0548% 15.3167% 3

16 6.480E+14 4 292825 1.8976E+20 0.7729% 3.2

17 2.516E+15 3 22100 5.5602E+19 0.2265% 3.4

18 9.365E+15 2 1275 1.194E+19 0.0486% 3.6

19 3.352E+16 1 50 1.6758E+18 0.0068% 3.8

20 1.156E+17 0 1 1.1563E+17 0.0005% 0.0559% 4

2.4552E+22 100.000%

NA= 50

NB= 50

qtot= 20

Figure 1: Multiplicities and probabilities for two Einstein solids. Table generated by a
gnumeric spreadsheet. (Excel version)
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4 Large Numbers

In conjunction with this topic, you should read Section 2.4 of Schroeder.
The first thing to note is that when definining a number as “large”, we need to be talking

about a dimensionless quantity. Otherwise there’s no absolute statement that something
is large or small; for example, an energy of 1 J doesn’t sound large, but if we write it as
6.24× 1018 eV it’s a different story.

Now, note that we can deal exactly with integers like 2! = 2, 4! = 24, 6! = 720, and
even 8! = 40, 320. But at some point it becomes impartial, to write 14! = 87, 178, 291, 200 or
18! = 6, 402, 373, 705, 728, 000. But as Physicists, we have a natural solution to this problem.
None of our physical quantities are measured exactly, and often we only know (or care about)
three or four significant figures. So we’ll say

g = 9.807 m/s2 (4.1)

which really means
9.8065 m/s2 . g . 9.8075 m/s2 (4.2)

So we really couldn’t care less whether 9! = 362, 880 or 9! = 362, 879 because the fractional
difference is less than the precision of our equations.

If we have a big integer but really don’t care what the last few digits are ,we just use
scientific notation and drop the last few digits, so

9! = 3.629× 105 (4.3)

which means for all we care

362, 850 = 3.6285× 105 . 9! . 3.6295× 105 = 362, 950 (4.4)

This makes it a lot more manageable to write

18! = 6.40× 1015. (4.5)

And this is our rough definition of what Schroeder means by a “large number”: a dimen-
sionless numbers you wouldn’t want to write without scientific notation. The number of
particles in a macroscopic object will always be a “large number”.

Implicit in this is that you’ll want to round off your large number, and not keep all the
decimal places down to hundreds, tens and ones. So if you add a “small number” like 6 or
25 or 137, it won’t change the value to within the precision you care about, so e.g.,

6.40× 1015 + 137 = 6.40× 1015 (4.6)

After all, we haven’t specified whether we mean

6, 401, 000, 000, 000, 000

or
6, 399, 000, 000, 000, 000

so adding 137 to this large number is completely “under the radar”.
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4.1 Very Large Numbers

Now, in statistical physics, we find ourselves writing N ! or eN or NN or 10N where N is a
“large number”. The result is a “very large number”, which we can’t even comfortably write
in scientific notation, e.g., if N = 6.022× 1023,

10N = 10602,200,000,000,000,000,000,000 (4.7)

but all the zeros in the exponent aren’t really zeros, so even that’s not right. For very large
numbers, you’d need to write the exponent itself in scientific notation. Or take the logarithm
and then write that in scientific notation.

This, then, is our definition of what Schroeder calls a “very large number”: a number
whose logarithm is a “large number”, i.e., the logarithm needs to be written in scientific
notation. And as a practical matter, we’ll ultimately want to deal with such numbers through
their logarithms.

4.2 Stirling’s Approximation

As noted above, and recalling for example the multiplicity of an Einstein solid

Ω(N, q) =

(
q +N − 1

q

)
=

(q +N − 1)!

q!(N − 1)!
(4.8)

multiplicities tend to involve factorials of large numbers (in this case q and N) which for
a macroscopic system tend to be of order 1023. So q! and N ! and (N − 1)! are very large
numbers, whose logarithms we want write in scientific notation. So we need a method to
approximate the logarithm of a very large number. (Note that if N is large, then N ! is very
large, but lnN ! is only large.)

Starting from the definition of the factorial

N ! = 1 · 2 · 3 · . . . · (N − 1) ·N =
N∏
k=1

k (4.9)

now, since
ln(ab) = ln a+ ln b , (4.10)

we see

lnN ! = ln 1 + ln 2 + ln 3 + . . .+ ln(N − 1) + lnN =
N∑
n=1

lnn (4.11)

Now for large N , we’ve broken the range from 1 to N into a large number of intervals, each of
which is a small fraction of the full range. This makes the sum above a good approximation
for a Riemann sum used in the definition of an integral:2

lnN ! =
N∑
n=1

lnn =
N∑
n=1

(lnn)(∆n) ≈
∫ N

1

lnn dn = [n lnn− n]N1 = N lnN −N − (ln 1− 1)

= N lnN −N + 1 ≈ N lnN −N
(4.12)

2The indefinite integral
∫

lnx dx = x lnx−x is left as an exercise; it can be done by integration by parts,
with u = lnx and dv = dx. Also worthwhile (and easier) is to check that d

dx (x lnx− x) = lnx.
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This is known as Stirling’s Approximation:

lnN ! ≈ N lnN −N (4.13)

Very rarely, we will need a better approximation (see the appendix of Schroeder for a defi-
nition

N ! ≈ NNe−N
√

2πN (4.14)

Taking the logarithm of (4.14) shows it differs from (4.13) by the addition of a term
1
2

ln(2πN)� N .

4.3 Multiplicity for a Large System

Now we are finally ready to estimate the multiplicity of an Einstein solid when the number
of oscillators N and the number of quanta of energy q are both large. In that case,

Ω(N, q) =
(q +N − 1)!

q!(N − 1)!
(4.15)

is a “very large number”, and we’ll want to deal with its logarithm (which is a “large
number”). This is (applying Stirling’s approximation in the form (4.13))

ln Ω = ln(q +N − 1)!− ln q!− ln(N − 1)!

≈ (q +N − 1) ln(q +N − 1)− (�q +����N − 1)− q ln q + �q − (N − 1) ln(N − 1) +���
��(N − 1)

(4.16)

Note that in general, when n and k and n− k are large, Stirling’s approximation tells us(
n

k

)
≈ n lnn− k ln k − (n− k) ln(n− k) . (4.17)

Also note that replacing N − 1 with N makes a negligible change to ln Ω, so

ln Ω ≈ (q +N) ln(q +N)− q ln q −N lnN (4.18)

Now, (4.18) is true in general for large q and N . We can obtain a slightly more enlight-
ening approximation by specializing to the case where q � N , which is known as the “high
energy limit”. In that case N/q is a small parameter and we write

ln(q +N) = ln

(
q

[
1 +

N

q

])
= ln q + ln

(
1 +

N

q

)
(4.19)

Now for x� 1, we can use a Taylor series (see homework) to approximate

ln(1 + x) ≈ x (4.20)

so that

ln(q +N) ≈ ln q +
N

q
(4.21)
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and

ln Ω ≈��
�q ln q+q

N

q
+N ln q+N

N

q
−��

�q ln q−N lnN = N+
N2

q
+N ln q−N lnN ≈ N+N ln

( q
N

)
(4.22)

where we have neglected N2

q
� N . (Note that we could not just neglect N compared to q off

the bat, because the q ln q terms cancelled, and we would have ended up neglecting N ln q,
which as large as any of the terms which survive.)

Now, if we want to talk about the multiplicity (which is proportional to the probability
of being in a particular macrostate), we have

Ω ∼ eN+N ln( q
N ) = eN

(
eln( q

N )
)N

=
(eq
N

)N
(4.23)

which is indeed a very large number. In fact, to be careful we should state this as

ln Ω ≈ ln

[(eq
N

)N]
; (4.24)

The “∼” appearing in (4.23) means that it is only correct give or take “large” (but not “very
large”) factors.

4.3.1 Probabilities for Interacting Large Einstein Solids

5 The Ideal Gas

In conjunction with this topic, you should read Section 2.5 of Schroeder.

6 Entropy

In conjunction with this topic, you should read Section 2.6 of Schroeder.

A Appendix: Correspondence to Class Lectures

Date Sections Pages
2004 January 27 1–2 2–6
2004 January 29 3–4.1 6–10
2004 February 3 4.2–4.3 10–12
2004 February 5 5 12–12
2004 February 10 6 12–12
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