Physics A300: Classical Mechanics I

Problem Set 6

Assigned 2004 October 26
Due 2004 November 2

Show your work on all problems!

1 Work Done Along a Path

Consider the path parametrized by

$$
\begin{align*}
& x(s)=s x_{0} \tag{1.1a}\\
& y(s)=s y_{0} \tag{1.1b}\\
& z(s)=s z_{0} \tag{1.1c}
\end{align*}
$$

where s ranges from 0 to 1 . The position vector associated with this path is

$$
\begin{equation*}
\vec{r}(s)=\hat{x} x(s)+\hat{y} y(s)+\hat{z} z(s) \tag{1.2}
\end{equation*}
$$

a) What are the position vectors $\vec{r}(0)$ and $\vec{r}(1)$ of the endpoints of this path?
b) Describe the path succinctly in words.
c) Calculate the derivative $\frac{d \vec{r}}{d s}$ of the position vector with respect to the parameter.
d) Suppose that a particle moves along this path while being acted on by a force field $\vec{F}(\vec{r})$ with components

$$
\begin{align*}
& F_{x}(x, y, z)=a y \tag{1.3a}\\
& F_{y}(x, y, z)=a x+b y^{3}+c y z \tag{1.3b}\\
& F_{z}(x, y, z)=b z^{3}+c y^{2} z \tag{1.3c}
\end{align*}
$$

i) Write the dot product $\vec{F}(\vec{r}(s)) \cdot \frac{d \vec{r}}{d s}$, using the trajectory (1.1) to substitute for x, y, and z and write your answer only as a function of s (and the constants a, b, c, x_{0}, y_{0}, and z_{0}).
ii) Calculate the work done by the force (1.3) on the particle as it moves along the path $\vec{r}(s)$ from $s=0$ to $s=1$. (Note that there must be other forces involved in the problem to keep the particle on this path, so Newton's second law is not really useful here.)

2 Velocity-Dependent Force in Three Dimensions

Consider a particle moving under the influence of the velocity-dependent force

$$
\begin{equation*}
\vec{F}=\vec{b} \times \vec{v} \tag{2.1}
\end{equation*}
$$

where $\vec{b}=b \hat{z}$ is a constant vector.
a) Writing the velocity as $\vec{v}=v_{x} \hat{x}+v_{y} \hat{y}+v_{z} \hat{z}$, work out the explicit form of \vec{F} in terms of b, v_{x}, v_{y}, v_{z}, and the unit vectors \hat{x}, \hat{y}, and \hat{z}.
b) By considering the three components of Newton's Second Law $\vec{F}=m \frac{d \vec{v}}{d t}$, find explicit expressions for \dot{v}_{x}, \dot{v}_{y} and \dot{v}_{z} in terms of m, b, and the components of \vec{v}.
c) The expressions you obtained in part b) are a set of coupled linear first-order differential equations for the three quantities $v_{x}(t), v_{y}(t)$, and $v_{z}(t)$. The general solution will have a total of three arbitrary constants. You can solve them as follows:
i) Take the time derivative of the equation for \dot{v}_{x} to obtain an expression for \ddot{v}_{x} in terms of \dot{v}_{y}.
ii) Substitute the expression for \dot{v}_{y} from part b) into the equation for \ddot{v}_{x}. This should give you a second order linear differential equation involving only v_{x} and its derivatives.
iii) Find the general solution to the equation from part c)ii), which will give you an expression for v_{x} involving two arbitrary constants.
iv) Take the time derivative of the result from part c)iii) to obtain an expression for \dot{v}_{x}, substitute this into the left-hand side of the first differential equation from part b), and solve algebraically for v_{y}.
v) Solve the last differential equation from part b) to obtain an expression for v_{z} involving a third arbitrary constant.
d) Suppose the particle has initial velocity $\vec{v}(0)=v_{0} \hat{x}$. Use this initial condition to find the values of the three arbitrary constants in your general solution and write the form of $\vec{v}(t)$ in the presence of the force (2.1) given this initial condition.
e) If the particle is initially at position $\vec{r}(0)=x_{0} \hat{x}+y_{0} \hat{y}+z_{0} \hat{z}$, integrate the expressions for the components of $\vec{v}(t)$ to find the trajectory $\vec{r}(t)=x(t) \hat{x}+y(t) \hat{y}+z(t) \hat{z}$.

3 Conversion to Polar Coördinates

Converting a two-dimensional vector field from Cartesian to polar coördinates requires application not only of the coördinate transformations

$$
\begin{align*}
x & =r \cos \phi \tag{3.1a}\\
y & =r \sin \phi \tag{3.1b}
\end{align*}
$$

but also the definitions of the basis vectors adapted to the two coördinate systems:

$$
\begin{align*}
& \hat{x}=\hat{r} \cos \phi-\hat{\phi} \sin \phi \tag{3.2a}\\
& \hat{y}=\hat{r} \sin \phi+\hat{\phi} \cos \phi \tag{3.2b}
\end{align*}
$$

a) Show explicitly starting from (3.2) that

$$
\begin{align*}
\hat{x} \cos \phi+\hat{y} \sin \phi & =\hat{r} \tag{3.3a}\\
-\hat{x} \sin \phi+\hat{y} \cos \phi & =\hat{\phi} \tag{3.3b}
\end{align*}
$$

b) Convert the following vector fields into polar coördinates. As an example, the vector field $\vec{F}=-k x \hat{x}-k y \hat{y}$ would be written $\vec{F}=-k r \hat{r}$.
i) $\vec{F}=-k x \hat{x}$
ii) $\vec{F}=-k x \hat{y}+k y \hat{x}$
iii) $\vec{F}=-\frac{\alpha}{x^{2}+y^{2}}(x \hat{x}+y \hat{y})$

