Physics A300: Classical Mechanics I

Problem Set 8

Assigned 2004 November 16
Problems 1 \& 2 Due 2004 November 23
Problem 3 Due 2004 November 30

1 Logarithmic Spiral Orbit

Consider a particle of mass m following the trajectory

$$
\begin{align*}
q(t)=r(t) & =r_{0} \sqrt{a t+b} \tag{1.1a}\\
\phi(t) & =\phi_{0} \ln (a t+b) \tag{1.1b}\\
z(t) & =0 \tag{1.1c}
\end{align*}
$$

where a, b, r_{0}, and ϕ_{0} are all constants.
a) Calculate the angular momentum L_{z} about the z axis and verify that it is a constant.
b) Assuming this trajectory is an orbit in a central force field $\vec{F}=F(r) \hat{r}$, find the form of $F(r)$. [Hint: use the trajectory (1.1) to write the radial component of the acceleration vector as a function of t, then use (1.1a) to replace the t dependence with r dependence.]
c) Integrate your result from part b) to obtain an expression for the potential energy $V(r)$.
d) Use the explicit form of the trajectory to work out the kinetic energy T and potential energy V as functions of time for this trajectory, calculate the total energy E, and verify that it is a constant.

2 Central Force with Quadratic Potential

Consider a particle of mass m moving with angular momentum L in a potential $V(r)=\frac{1}{2} k r^{2}$.
a) Construct the following combinations of k, L, and m : i) E_{u}, with units of energy and ii) r_{u}, with units of length.
b) Construct the effective potential $V_{\text {eff }}(r)$, write $V_{\text {eff }} / E_{u}$ as a function of r / r_{u}, and use a computer plotting program to plot $V_{\text {eff }} / E_{u}$ versus r / r_{u}. Be sure to include the commands used as well as the plot itself. (Hint: consider the combinations E_{u} / r_{u}^{2} and $E_{u} r_{u}^{2}$.)
c) For what values of total energy are there two turning points $r_{\text {min }}$ and $r_{\max }$? Find $r_{\text {min }}$ and $r_{\text {max }}$ in terms of the energy E.
d) Use the function $V_{\text {eff }}(r)$ to find the radius $r_{\text {circ }}$ of a circular orbit with angular momentum L. What is the total energy $E_{\text {circ }}$ of this orbit?
e) For an energy only slightly larger than $E_{\text {circ }}$, calculate the frequency ω_{R} of the small radial oscillations about $r_{\text {circ }}$. Calculate the angular frequency ω_{Φ} of the angular oscillations when $r \approx$ $r_{\text {circ }}$ and compare the two frequencies quantitatively. (Both frequencies should be expressed in terms of the parameters k, m, and L, and not in terms of e.g., $r_{\text {circ }}$ or $E_{\text {circ. }}$.)

3 Circular Orbits in a Gravitational Field

Note: None of your answers to this problem should involve the constant K; you should use the relationship $K=-G M m$ to express them in terms of the masses of the attracting body and the test particle.

Consider a test particle of mass m moving in a circular orbit of radius R under the gravitational attraction of a body of mass M fixed at the center of the circle.
a) Use Kepler's third law [see, e.g., Symon's Eq. (3.267)] to calculate the orbital speed v as a function of R.
b) Use the fact that this orbit has semimajor axis $a=R$ and eccentricity $\varepsilon=0$, and the expressions for L and E in terms of the orbital parameters to express the total energy E and angular momentum L as functions of the radius R of the orbit (and not of each other or v).
c) Use the result of part a) to find the kinetic energy T as a function of R.
d) Write the potential energy $V(R)$ and verify that $T+V=E$.
e) Suppose we reduce the orbital energy from a satellite in such a way that it changes from one circular orbit to another. Do the following quantities increase or decrease?
i) orbital radius;
ii) orbital speed;
iii) orbital period
iv) kinetic energy;
v) potential energy;
vi) orbital angular momentum

