Physics A301: Classical Mechanics II

Problem Set 8

Assigned 2005 March 17
Due 2005 March 31

Show your work on all problems! Be sure to give credit to any collaborators, or outside sources used in solving the problems.

1 Partial Derivatives of the Hamiltonian

Note: when taking partial derivatives of the Hamiltonian, we usually consider it to be a function of coördinates and momenta rather than of velocities. In this problem, we will explicitly consider H as a function of different sets of arguments and compare the partial derivatives with different quantities held constant.

Consider the Lagrangian

$$
L(q, \dot{q}, t)=\frac{a q \dot{q}^{2}}{2}+b \dot{q} \sin \omega t-\frac{k q^{2}}{2}
$$

where a, b, ω and k are all constants included to get the dimensions right.
a) Take the partial derivatives $\left(\frac{\partial L}{\partial q}\right)_{\dot{q}, t},\left(\frac{\partial L}{\partial \dot{q}}\right)_{q, t}$, and $\left(\frac{\partial L}{\partial t}\right)_{q, \dot{q}}$.
b) Find the conjugate momentum $p(q, \dot{q}, t)=\left(\frac{\partial L}{\partial \dot{q}}\right)_{q, t}$.
c) Invert the results of part b) to obtain $\dot{q}(q, p, t)$.
d) Construct the Hamiltonian $H(q, \dot{q}, t)=p(q, \dot{q}, t) \dot{q}-L(q, \dot{q}, t)$, writing it first as a function of the coördinate and velocity with no reference to the momentum. (This is not how we usually do it, but we're trying to prove a point here.)
e) Take the partial derivatives $\left(\frac{\partial H}{\partial q}\right)_{\dot{q}, t},\left(\frac{\partial H}{\partial \dot{q}}\right)_{q, t}$, and $\left(\frac{\partial H}{\partial t}\right)_{q, \dot{q}}$. Show that $\left(\frac{\partial H}{\partial q}\right)_{\dot{q}, t} \neq-\left(\frac{\partial L}{\partial q}\right)_{\dot{q}, t}$ and $\left(\frac{\partial H}{\partial t}\right)_{q, \dot{q}} \neq-\left(\frac{\partial L}{\partial t}\right)_{q, \dot{q}}$.
f) Use the results of parts c) and d) to rewrite the Hamiltonian as a function $H(q, p, t)$ of the coördinate and momentum with no reference to the velocity.
g) Take the partial derivatives $\left(\frac{\partial H}{\partial q}\right)_{p, t},\left(\frac{\partial H}{\partial p}\right)_{q, t}$, and $\left(\frac{\partial H}{\partial t}\right)_{q, p}$. These will be functions of q, p, and t.
h) Use the results of part b) to write all three partial derivatives from part g) as functions of q, \dot{q}, and t, and show that $\left(\frac{\partial H}{\partial q}\right)_{p, t}=-\left(\frac{\partial L}{\partial q}\right)_{\dot{q}, t}$, and $\left(\frac{\partial H}{\partial t}\right)_{q, p}=-\left(\frac{\partial L}{\partial t}\right)_{q, \dot{q}}$.

2 Two-Body Problem Revisited

Consider the Lagrangian

$$
L=\frac{M \dot{X}^{2}}{2}+\frac{M \dot{Y}^{2}}{2}+\frac{M \dot{Z}^{2}}{2}+\frac{\mu \dot{r}^{2}}{2}+\frac{\mu r^{2} \dot{\theta}^{2}}{2}+\frac{\mu r^{2} \sin ^{2} \theta \dot{\phi}^{2}}{2}+\frac{G M \mu}{r}-M g Z
$$

which you found in problem 2 on problem set 5 .
a) Construct the six conjugate momenta $p_{X}, p_{Y}, p_{Z}, p_{r}, p_{\theta}$, and p_{ϕ} as functions of the coördinates $\{X, Y, Z, r, \theta, \phi\}$ and velocities $\{\dot{X}, \dot{Y}, \dot{Z}, \dot{r}, \dot{\theta}, \dot{\phi}\}$.
b) Invert those relationships to find the six generalized velocities $\dot{X}, \dot{Y}, \dot{Z}, \dot{r}, \dot{\theta}$, and $\dot{\phi}$ in terms of the coördinates and momenta.
c) Construct the Hamiltonian as a function of the coördinates and momenta with no reference to any of the velocities in your final result.
d) Write all twelve of Hamilton's equations. Which coördinates are ignorable?

3 Principle of Least Action

Consider a family of curves $x_{\alpha}(t)=x(t)+\alpha \xi(t)$, where $\xi(t)$ is an otherwise arbitrary function which vanishes at times t_{i} and t_{f} [i.e., $\xi\left(t_{i}\right)=0=\xi\left(t_{f}\right)$].
a) Calculate the derivatives $\frac{\partial x_{\alpha}}{\partial \alpha}$ and $\frac{\partial \dot{x}_{\alpha}}{\partial \alpha}$ where \dot{x}_{α} is the time derivative of $x_{\alpha}(t)$ (implicitly at constant α, since α is a single number and not a function of time).
b) Consider a function $L(x, \dot{x}, t)$, from which we can derive a function $L_{\alpha}(t)=L\left(x_{\alpha}(t), \dot{x}_{\alpha}(t), t\right)$. Use the chain rule to write $\frac{\partial L_{\alpha}}{\partial \alpha}$ in terms of the partial derivatives $\left.\frac{\partial L}{\partial x}\right|_{x=x_{\alpha}}$ and $\left.\frac{\partial L}{\partial \dot{x}}\right|_{x=x_{\alpha}}$.
c) Define the function

$$
S(\alpha)=\int_{t_{i}}^{t_{f}} L_{\alpha}(t) d t
$$

and use the results of the previous two parts to write $S^{\prime}(\alpha)$ as an integral containing $\xi, \dot{\xi}$, $\left.\frac{\partial L}{\partial x}\right|_{x=x_{\alpha}}$ and $\left.\frac{\partial L}{\partial \dot{x}}\right|_{x=x_{\alpha}}$.
d) Use integration by parts (i.e., $\int_{t_{i}}^{t_{f}} x \frac{d y}{d t} d t=\left.x y\right|_{t_{i}} ^{t_{f}}-\int_{t_{i}}^{t_{f}} y \frac{d x}{d t} d t$) to convert the term involving $\dot{\xi}$ into a term involving ξ.
e) Show that if $x(t)$ satisfies the Lagrange equation $\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}=\frac{\partial L}{\partial x}$, then $S(\alpha)$ has a local extremum at $\alpha=0$.
S is called the action, and Lagrange's equations are equivalent to the condition that the action be smaller for the classical trajectory than for any "nearby" trajectory.

