Physics A301: Classical Mechanics II

Problem Set 8

Assigned 2005 March 17 Due 2005 March 31

Show your work on all problems! Be sure to give credit to any collaborators, or outside sources used in solving the problems.

1 Partial Derivatives of the Hamiltonian

Note: when taking partial derivatives of the Hamiltonian, we usually consider it to be a function of coördinates and momenta rather than of velocities. In this problem, we will explicitly consider H as a function of different sets of arguments and compare the partial derivatives with different quantities held constant.

Consider the Lagrangian

$$L(q, \dot{q}, t) = \frac{aq\dot{q}^2}{2} + b\dot{q}\sin\omega t - \frac{kq^2}{2}$$

where a, b, ω and k are all constants included to get the dimensions right.

- a) Take the partial derivatives $\left(\frac{\partial L}{\partial q}\right)_{\dot{q},t}$, $\left(\frac{\partial L}{\partial \dot{q}}\right)_{q,t}$, and $\left(\frac{\partial L}{\partial t}\right)_{q,\dot{q}}$.
- b) Find the conjugate momentum $p(q,\dot{q},t)=\left(\frac{\partial L}{\partial \dot{q}}\right)_{a.t}$.
- c) Invert the results of part b) to obtain $\dot{q}(q, p, t)$.
- d) Construct the Hamiltonian $H(q, \dot{q}, t) = p(q, \dot{q}, t) \dot{q} L(q, \dot{q}, t)$, writing it first as a function of the coördinate and velocity with no reference to the momentum. (This is not how we usually do it, but we're trying to prove a point here.)
- e) Take the partial derivatives $\left(\frac{\partial H}{\partial q}\right)_{\dot{q},t}$, $\left(\frac{\partial H}{\partial \dot{q}}\right)_{q,t}$, and $\left(\frac{\partial H}{\partial t}\right)_{q,\dot{q}}$. Show that $\left(\frac{\partial H}{\partial q}\right)_{\dot{q},t} \neq -\left(\frac{\partial L}{\partial q}\right)_{\dot{q},t}$ and $\left(\frac{\partial H}{\partial t}\right)_{q,\dot{q}} \neq -\left(\frac{\partial L}{\partial t}\right)_{q,\dot{q}}$.
- f) Use the results of parts c) and d) to rewrite the Hamiltonian as a function H(q, p, t) of the coördinate and momentum with no reference to the velocity.
- g) Take the partial derivatives $\left(\frac{\partial H}{\partial q}\right)_{p,t}$, $\left(\frac{\partial H}{\partial p}\right)_{q,t}$, and $\left(\frac{\partial H}{\partial t}\right)_{q,p}$. These will be functions of q, p, and t
- h) Use the results of part b) to write all three partial derivatives from part g) as functions of q, \dot{q} , and t, and show that $\left(\frac{\partial H}{\partial q}\right)_{p,t} = -\left(\frac{\partial L}{\partial q}\right)_{\dot{q},t}$, and $\left(\frac{\partial H}{\partial t}\right)_{q,p} = -\left(\frac{\partial L}{\partial t}\right)_{q,\dot{q}}$.

2 Two-Body Problem Revisited

Consider the Lagrangian

$$L = \frac{M\dot{X}^2}{2} + \frac{M\dot{Y}^2}{2} + \frac{M\dot{Z}^2}{2} + \frac{\mu\dot{r}^2}{2} + \frac{\mu r^2\dot{\theta}^2}{2} + \frac{\mu r^2\sin^2\theta\,\dot{\phi}^2}{2} + \frac{GM\mu}{r} - MgZ$$

which you found in problem 2 on problem set 5.

- a) Construct the six conjugate momenta p_X , p_Y , p_Z , p_r , p_θ , and p_ϕ as functions of the coördinates $\{X,Y,Z,r,\theta,\phi\}$ and velocities $\{\dot{X},\dot{Y},\dot{Z},\dot{r},\dot{\theta},\dot{\phi}\}$.
- b) Invert those relationships to find the six generalized velocities \dot{X} , \dot{Y} , \dot{Z} , \dot{r} , $\dot{\theta}$, and $\dot{\phi}$ in terms of the coördinates and momenta.
- c) Construct the Hamiltonian as a function of the coördinates and momenta with no reference to any of the velocities in your final result.
- d) Write all twelve of Hamilton's equations. Which coördinates are ignorable?

3 Principle of Least Action

Consider a family of curves $x_{\alpha}(t) = x(t) + \alpha \xi(t)$, where $\xi(t)$ is an otherwise arbitrary function which vanishes at times t_i and t_f [i.e., $\xi(t_i) = 0 = \xi(t_f)$].

- a) Calculate the derivatives $\frac{\partial x_{\alpha}}{\partial \alpha}$ and $\frac{\partial \dot{x}_{\alpha}}{\partial \alpha}$ where \dot{x}_{α} is the time derivative of $x_{\alpha}(t)$ (implicitly at constant α , since α is a single number and not a function of time).
- b) Consider a function $L(x, \dot{x}, t)$, from which we can derive a function $L_{\alpha}(t) = L(x_{\alpha}(t), \dot{x}_{\alpha}(t), t)$. Use the chain rule to write $\frac{\partial L_{\alpha}}{\partial \alpha}$ in terms of the partial derivatives $\frac{\partial L}{\partial x}\Big|_{x=x_{\alpha}}$ and $\frac{\partial L}{\partial \dot{x}}\Big|_{x=x_{\alpha}}$.
- c) Define the function

$$S(\alpha) = \int_{t}^{t_f} L_{\alpha}(t) dt$$

and use the results of the previous two parts to write $S'(\alpha)$ as an integral containing ξ , $\dot{\xi}$, $\frac{\partial L}{\partial x}\Big|_{x=x_{\alpha}}$ and $\frac{\partial L}{\partial \dot{x}}\Big|_{x=x_{\alpha}}$.

- d) Use integration by parts (i.e., $\int_{t_i}^{t_f} x \frac{dy}{dt} dt = xy|_{t_i}^{t_f} \int_{t_i}^{t_f} y \frac{dx}{dt} dt$) to convert the term involving $\dot{\xi}$ into a term involving ξ .
- e) Show that if x(t) satisfies the Lagrange equation $\frac{d}{dt} \frac{\partial L}{\partial \dot{x}} = \frac{\partial L}{\partial x}$, then $S(\alpha)$ has a local extremum at $\alpha = 0$.

S is called the action, and Lagrange's equations are equivalent to the condition that the action be smaller for the classical trajectory than for any "nearby" trajectory.