Physics A301: Classical Mechanics II

Problem Set 9

Assigned 2005 April 7
Due 2005 April 14

Show your work on all problems! Be sure to give credit to any collaborators, or outside sources used in solving the problems.

1 Practice with Tensors

Consider the vectors $\vec{V}=2 \hat{y}+\hat{z}$ and $\vec{W}=2 \hat{x}-\hat{z}$. Write the following tensors i) in terms of basis tensors such as $\hat{x} \otimes \hat{x}, \hat{x} \otimes \hat{y}$, etc., and ii) as a matrix $\mathbf{T}=\left(\begin{array}{lll}T_{x x} & T_{x y} & T_{x z} \\ T_{y x} & T_{y y} & T_{y z} \\ T_{z x} & T_{z y} & T_{z z}\end{array}\right)$ where
$\overleftrightarrow{T}=T_{x x} \hat{x} \otimes \hat{x}+T_{x y} \hat{x} \otimes \hat{y}+T_{x z} \hat{x} \otimes \hat{z}+T_{y x} \hat{y} \otimes \hat{x}+T_{y y} \hat{y} \otimes \hat{y}+T_{y z} \hat{y} \otimes \hat{z}+T_{z x} \hat{z} \otimes \hat{x}+T_{z y} \hat{z} \otimes \hat{y}+T_{z z} \hat{z} \otimes \hat{z}$ (As an example, if $\vec{a}=2 \hat{y}$ and $\vec{b}=3 \hat{x}, \overleftrightarrow{Q}=\vec{a} \otimes \vec{b}=6(\hat{y} \otimes \hat{x})$, which means the only non-zero component of \overleftrightarrow{Q} is $Q_{y x}=6$, and thus $\mathbf{Q}=\left(\begin{array}{lll}0 & 0 & 0 \\ 6 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.)
a) $\overleftrightarrow{A}=\vec{V} \otimes \vec{V}$;
b) $\overleftrightarrow{B}=\vec{W} \otimes \vec{W}$;
c) $\overleftrightarrow{C}=\vec{V} \otimes \vec{W}$;
d) $\overleftrightarrow{D}=\vec{W} \otimes \vec{V}$;
e) $\overleftrightarrow{E}=\frac{\overleftrightarrow{C}+\overleftrightarrow{D}}{2}$;
f) $\overleftrightarrow{F}=\frac{\overleftrightarrow{C}-\overleftrightarrow{D}}{2}$;

2 Tensors and Rotating Coördinates

a) Show that the centrifugal force can be written as a tensor dotted into the position vector:

$$
-m \vec{\omega} \times(\vec{\omega} \times \vec{r})=\overleftrightarrow{M} \cdot \vec{r}
$$

$\stackrel{\text { First write the tensor }}{\leftrightarrow} \overleftrightarrow{M}$ in terms of tensor products of vectors, along with the unit tensor $\overleftrightarrow{1}$, then write its components in terms of the (Cartesian) components of $\vec{\omega}$.
b) Consider two sets of Cartesian basis vectors: one fixed set $\{\hat{x}, \hat{y}, \hat{z}\}=\left\{\hat{e}_{i} \mid i=1,2,3\right\}$ and one set $\left\{\hat{x}^{\prime}, \hat{y}^{\prime}, \hat{z}^{\prime}\right\}=\left\{\hat{e}_{i}^{\prime} \mid i=1,2,3\right\}$ rotating with instantaneous angular velocity ω. (When studying rotating coördinates in Chaper 7, we called these $\left\{\hat{x}^{*}, \hat{y}^{*}, \hat{z}^{*}\right\}$.) The components of the tensor in these two bases are as usual ${ }^{1}$

$$
\begin{equation*}
\overleftrightarrow{T}=\sum_{i=1}^{3} \sum_{j=1}^{3} T_{i j}\left(\hat{e}_{i} \otimes \hat{e}_{j}\right)=\sum_{i=1}^{3} \sum_{j=1}^{3} T_{i j}^{\prime}\left(\hat{e}_{i}^{\prime} \otimes \hat{e}_{j}^{\prime}\right) \tag{2.1}
\end{equation*}
$$

[^0]Define "primed" and "unprimed" time derivatives

$$
\begin{align*}
\frac{d \overleftrightarrow{T}}{d t} & =\sum_{i=1}^{3} \sum_{j=1}^{3} \frac{d T_{i j}}{d t}\left(\hat{e}_{i} \otimes \hat{e}_{j}\right) \tag{2.2a}\\
\frac{d^{\prime} \overleftrightarrow{T}}{d t} & =\sum_{i=1}^{3} \sum_{j=1}^{3} \frac{d T_{i j}^{\prime}}{d t}\left(\hat{e}_{i}^{\prime} \otimes \hat{e}_{j}^{\prime}\right) \tag{2.2b}
\end{align*}
$$

and show that

$$
\begin{equation*}
\frac{d \overleftrightarrow{T}}{d t}=\frac{d^{\prime} \overleftrightarrow{T}}{d t}+\vec{\omega} \times \overleftrightarrow{T}-\overleftrightarrow{T} \times \vec{\omega} \tag{2.3}
\end{equation*}
$$

where the cross product of a vector with a tensor is defined in the obvious way, starting from the dyads:

$$
\begin{align*}
(\vec{A} \otimes \vec{B}) \times \vec{V} & =\vec{A} \otimes(\vec{B} \times \vec{V}) \tag{2.4a}\\
\vec{V} \times(\vec{A} \otimes \vec{B}) & =(\vec{V} \times \vec{A}) \otimes \vec{B} \tag{2.4b}
\end{align*}
$$

3 Kinetic Energy

Consider a distribution of N point particles all rotating with angular velocity $\vec{\omega}$ relative to a fixed origin.
a) Write the velocity $\dot{\vec{r}}_{k}$ of the k th particle in terms of the angular velocity $\vec{\omega}$ and its position vector \vec{r}_{k}.
b) Write the total kinetic energy

$$
T=\sum_{k=1}^{N} \frac{1}{2} m_{k}\left(\dot{\vec{r}}_{k} \cdot \dot{\vec{r}}_{k}\right)
$$

in terms of $\vec{\omega}$ and the positions of the particles.
c) Prove the vector identity

$$
\begin{equation*}
(\vec{A} \times \vec{B}) \cdot(\vec{C} \times \vec{D})=(\vec{A} \cdot \vec{C})(\vec{B} \cdot \vec{D})-(\vec{A} \cdot \vec{D})(\vec{B} \cdot \vec{C}) \tag{3.1}
\end{equation*}
$$

by applying the identities

$$
\begin{equation*}
\vec{U} \cdot(\vec{V} \times \vec{W})=(\vec{U} \times \vec{V}) \cdot \vec{W} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{U} \times(\vec{V} \times \vec{W})=\vec{V}(\vec{U} \cdot \vec{W})-\vec{W}(\vec{U} \cdot \vec{V}) \tag{3.3}
\end{equation*}
$$

with suitable choices for \vec{U}, \vec{V}, and \vec{W} each time.
d) Use the identity (3.1) to rewrite T in a form containing no cross products.
e) Use tensor notation to pull $\vec{\omega}$ outside the sum as we did in the derivation of $\vec{L}=\overleftrightarrow{I} \cdot \vec{\omega}$, and write the kinetic energy in the form

$$
\begin{equation*}
T=\vec{\omega} \cdot \overleftrightarrow{A} \cdot \vec{\omega} \tag{3.4}
\end{equation*}
$$

writing the tensor \overleftrightarrow{A} in terms of the masses and position vectors of the particles.
f) How is \overleftrightarrow{A} related to the inertia tensor \overleftrightarrow{I} ?

[^0]: ${ }^{1}$ We should probably call the primed components something like $\left\{T_{i^{\prime} j^{\prime}}\right\}$ or $\left\{T_{i j^{\prime}}\right\}$ but with two indices it gets kind of cumbersome, so we fall back on the rationalization that $\left\{T_{i j}^{\prime}\right\}$ are the elements of the matrix \mathbf{T}^{\prime}.

