
Physics A301: Classical Mechanics II

Problem Set 11

Assigned 2005 April 21
Due 2005 April 28

Show your work on all problems! Be sure to give credit to any collaborators, or outside
sources used in solving the problems.

1 Stability of Precession

In this problem, consider an object in which all three eigenvalues (I1, I2, and I3) of the inertia
tensor are different. Let the angular momentum vector be, initially at least, nearly parallel to the
principal axis û3, so that ω′z � ω′x and ω′z � ω′y. Consider the evolution in the absence of torques,
~N = ~0.

a) Write Euler’s equations as expressions for ω̇′x, ω̇′y, and ω̇′z.

b) Explain why, in the limit that ω′ 2x + ω′ 2y � ω′ 2z , ω′z can be treated as approximately constant.

c) Given the results of part b), the first two of Euler’s equations are a pair of coupled first-order
differential equations for ω′x and ω′y. By appropriate differentiation and substitution, convert
them into decoupled second-order equations of the form

ω̈′x = Γω′x (1.1a)

ω̈′y = Γω′y (1.1b)

where Γ is some constant made up of I1, I2, I3, and ω′z.

d) For the case where Γ > 0, define β =
√

Γ and construct the general solution to (1.1a) (which
should contain two arbitrary constants). Find the corresponding ω′y using the results of part c).

e) For the case where Γ < 0, define Ω =
√
−Γ and construct the general solution to (1.1a)

(which should contain two arbitrary constants). Find the corresponding ω′y using the results
of part c).

f) For which sign of Γ will ω′x and ω′y remain small compared to ω′z? (This case corresponds
to stable precession about the body axis û3, while in the other case the angle between the
rotation axis and the body axis will grow for a general choice of the arbitrary constants in the
general solution to the differential equation, and our approximation will break down.)

g) What is the sign of Γ, and will we see a stable precession about û3, for each of the following
cases?

i) If I3 is the largest eigenvalue of the inertia tensor, i.e., I3 > I1 and I3 > I2.

ii) If I3 is the middle eigenvalue of the inertia tensor, i.e., I1 > I3 > I2 or I2 > I3 > I1.

iii) If I3 is the smallest eigenvalue of the inertia tensor, i.e., I3 < I1 and I3 < I2.
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2 Polar Wandering on the Earth

Do Problem 2 of Chapter 11 of Symon. You may find the following clarifications/tips useful:

a) You’re being asked to treat the Earth as an ellipsoid of uniform density, mass 5.972× 1024 kg,
and semiäxes a = b = 6.378 × 106 m and c = 6.357 × 106 m. Note that we calculated the
components of the inertia tensor of a uniform-density ellipsoid in class.

b) In order to keep the center of mass in the same place, you should put two pointlike mountains,
each of mass 5 × 10−10M⊕, directly opposite on the surface of the otherwise spherical Earth
(of radius R⊕ = 6.371× 106 m).

c) Express your answer as a fraction of the Earth’s mass. Again, considering the “mountain”
to be split in half and placed at antipodal points on the Earth’s equator will simplify things.
(Note that there’s something funny about this part of the problem; it’s apparently something
of a trick question, but there is still a numerical answer.)

Note that we’re looking for actual numbers, with appropriate units and numbers of significant
figures, as the answers to the quantitative questions.

3 Yaw, Pitch and Roll

Warning: The conventions used in this problem are not standard (if such a thing even exists).
An alternative to the Euler angles we discussed in class, often used for specifying the orientation

of an airplane in space, is the set of yaw, pitch, and roll angles. Starting with a system of unit
vectors Ê, N̂ , and Û , pointing East, North, and Up, respectively, we can describe the orientation
of an object by imagining the rotations needed to take it from an imaginary reference orientation,
such as with the fuselage pointed due North and the wings pointed East and West in the horizontal
plane, to its actual orientation.

1. First, we rotate the plane clockwise through a yaw angle Y about the horizontal direction Û ,
which rotates the unit vectors {Ê, N̂ , Û} into new unit vectors {ξ̂, η̂, ζ̂} (which are not the
same as the vectors with the same names in the standard Euler angles approach). After this
rotation, the plane’s fuselage is pointed in the direction of η̂ and its right wing is pointed in
the direction of ξ̂.

2. Next, we rotate the plane counterclockwise through a pitch angle P about the right wing
direction ξ̂ (so that if 0 < P < π/2 we are tipping the plane’s nose up), which rotates the
unit vectors {ξ̂, η̂, ζ̂} into new unit vectors {X̂, Ŷ , Ẑ} (which have nothing to do with the
coördinates of the center of mass). After this rotation, the plane’s fuselage is pointed in the
direction of Ŷ and its right wing is pointed in the direction of X̂.

3. Finally, we rotate the plane counterclockwise through a roll angle R about the fuselage direc-
tion Ŷ , which rotates the unit vectors {X̂, Ŷ , Ẑ} into the final body unit vectors {û1, û2, û3}.
After this rotation, the plane’s fuselage is pointed in the direction of û2 and its right wing is
pointed in the direction of û1.
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a) The diagram below illustrates the results of the clockwise rotation through the yaw angle for
0 < Y < π/2. Use the diagram to write Ê, N̂ , and Û as linear combinations of ξ̂, η̂, and ζ̂.
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b) Draw a similar diagram to illustrate the results of the counterclockwise rotation through the
pitch angle for 0 < P < π/2. Use the diagram to write ξ̂, η̂, and ζ̂ as linear combinations of
X̂, Ŷ , and Ẑ.

c) Draw a similar diagram to illustrate the results of the counterclockwise rotation through the
roll angle for 0 < R < π/2. Use the diagram to write X̂, Ŷ , and Ẑ as linear combinations of
û1, û2, and û3.

d) For an object which is rotating and therefore has changing yaw, pitch, and roll angles, write
the angular velocity vector ~ω as a sum of three terms involving Ẏ , Ṗ , and Ṙ and appropriate
unit vectors. Be careful about clockwise and counter-clockwise rotations when considering
the signs of the different terms.

e) Use the results of parts a) through c) to replace the unit vectors appearing in your expression
for ~ω with linear combinations of the body unit vectors û1, û2, and û3 and thereby find the
components ω′x, ω′y, and ω′z in this basis of the angular velocity vector ~ω = ω′xû1 +ω′yû2 +ω′zû3.

Note that you shouldn’t have to write out any rotation matrices to do this problem.
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