
How to Use Calculus Like a Physicist

Physics A300∗

Fall 2004

The purpose of these notes is to make contact between the abstract descriptions you may
have seen in your calculus classes and the applications of mathematical methods to problems
in Physics.

1 Solving Ordinary First-Order Differential Equations

By Integration

Often in Physics, one has an expression for the first time derivative of a quantity, along with
its value at some initial time, and needs to find its value at all times. So for example, you
may know

ẋ(t) = at (1.1a)

x(0) = x0 (1.1b)

One standard way to solve this problem is to take the indefinite integral of ẋ(t) to find the
value of x(t) up to an additive constant, then use the initial condition to set that constant.
So for example in the problem stated in (1.1), we would find

x(t) =

∫
ẋ(t) dt =

1

2
at2 + C (1.2)

and then set the constant C via
x0 = x(0) = C (1.3)

which tells us

x(t) = x0 +
1

2
at2 (1.4)

On the other hand, we could also solve the problem in one step with a definite integral,
as follows. The Fundamental Theorems of Calculus tell us that for any t1 and t2,∫ t2

t1

ẋ(t) dt = x(t2) − x(t1) (1.5)
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or

x(t2) = x(t1) +

∫ t2

t1

ẋ(t) dt (1.6)

If we set t1 to 0 (the time at which the initial condition is known), everything on the right-
hand side is given in the statement of the problem, e.g., (1.1), so we can integrate to find
x(t2) for any t2. We’d like to rename t2 to t so that we can state the answer as x(t), but we
should be a little careful, because the integration variable is already called t, and it’s a no-no
to have the same variable appear in the same expression as the integration variable of a
definite integral and also outside the integral (or in its limits). So we rename the integration
variable from t to t′, which lets us rename t2 to t, and obtain the general expression

x(t) = x(0) +

∫ t

0

ẋ(t′) dt′ (1.7)

in the example problem, this becomes

x(t) = x0 +

∫ t

0

at′ dt′ = x0 +
1

2
at′2
∣∣∣∣t
0

= x0 +
1

2
at2 (1.8)

as before.
Both methods are valid, but the indefinite integral method saves you from having to

define a lot of temporary integration constants.

2 Derivatives

2.1 Leibniz Notation

Many math books define the derivative of a function f(x) with the notation

f ′(x) = lim
h→0

f(x + h) − f(x)

h
(2.1)

This is perfectly unambiguous, but conceals somewhat the physical nature of a derivative
as a ratio of small changes. Thus it’s sometimes useful to work with alternative notation,
invented by Leibniz, which writes

df

dx
= f ′(x) = lim

∆x→0

f(x + ∆x) − f(x)

∆x
= lim

∆x→0

∆f

∆x
(2.2)

where ∆f = f(x + ∆x) − f(x) is the change in f(x) associated with a change in x.

2.2 Working With Differentials

The notation df
dx

represents the derivative, not the ratio of two numbers df and dx. However,
it is often useful to manipulate it as though it were. In particular, we refer to dx as an
infinitesimal change in x, and df = f(x+dx)−f(x) is the corresponding infinitesimal change
in f(x). This is really just a notational convenience, but it’s something that makes it a lot
easier to do implicit differentiation, and, in multi-variable calculus, to obtain relationships
involving partial derivatives.
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2.2.1 Example: Differentiating lnx by Implicit Differentiation

To give an example of how using differentials simplifies things, consider the function

y = lnx (2.3)

which is implicitly defined by
x = ey (2.4)

If we know that
d

dy
ey = ey (2.5)

we can find d
dx

lnx by implicit differentiation. First, we take the differential of both sides of
(2.4), and obtain

dx = d(ey) = eydy = xdy (2.6)

If we allow ourselves manipulate the differentials algebraically as though they were numbers,
we can solve for

dy

dx
=

1

x
(2.7)

which is indeed the derivative of lnx. There is some non-trivial mathematics behind showing
that you can treat differentials in this way, but the important thing for us as Physicists is
that it not only seems like a reasonable thing to do, it works.

2.2.2 Using Differentials in Multi-Variable Calculus

If we have some physical quantity w which can be written as a function1 f(x, y, z) of three
variables x, y, and z, the three partial derivatives of f are defined as

∂w

∂x
= fx(x, y, z) = lim

∆x→0

f(x + ∆x, y, z) − f(x, y, z)

∆x
(2.8a)

∂w

∂y
= fy(x, y, z) = lim

∆y→0

f(x, y + ∆y, z) − f(x, y, z)

∆y
(2.8b)

∂w

∂z
= fz(x, y, z) = lim

∆z→0

f(x, y, z + ∆z) − f(x, y, z)

∆z
(2.8c)

sometimes we’ll write
(
∂w
∂x

)
y,z

,
(

∂w
∂y

)
x,z

, and
(
∂w
∂z

)
x,y

, to emphasize which variables are being

held constant in the partial derivatives.

1In this section of the notes, I’m being extra-explicit about using different letters for the same “physical”
quantities depending on which set of variables they’re being considered functions of. This is the Mathe-
matician’s way of doing things. In fact, as Physicists, we wouldn’t normally bother with this, and would
write

w = w(x, y, z)

or
w(t) = w(x(t), y(t), z(t))
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Now, we can summarize the three partial derivatives in a single expression involving
“differentials”, i.e., infinitesimal changes in the various variables. The basic idea is that if
we make infinitesimal changes dx, dy, and dz in the variables x, y, and z, that will lead to
an infinitesimal change

dw = f(x + dx, y + dy, z + dz) − f(x, y, z) (2.9)

Off the bat, we can’t relate this to any of the partial derivatives, since all three variables are
changing at once. But if we add and subtract the right terms, we can focus on one variable
changing at a time:

dw =

fz(x+dx,y+dy,z) dz︷ ︸︸ ︷
f(x + dx, y + dy, z + dz) − f(x + dx, y + dy, z)

+ f(x + dx, y + dy, z) − f(x + dx, y, z)︸ ︷︷ ︸
fy(x+dx,y,z) dy

+ f(x + dx, y, z) − f(x, y, z)︸ ︷︷ ︸
fx(x,y,z) dx

(2.10)

Now the last term is just the partial derivative ∂w
∂x

times the differential dx. The middle term
is nearly the partial derivative ∂w

∂y
times dy, except it’s evaluated at (x + dx, y, z) instead of

(x, y, z). In fact,
fy(x + dx, y, z) − fy(x, y, z) = fyx(x, y, z) dx (2.11)

(where fyx is a second derivative), but if we use this fact, we see that

fy(x + dx, y, z) dy = fy(x, y, z) dy +
��

���
���

�:
fyx(x, y, z) dy dx (2.12)

We can drop the correction term because it contains two differentials, and one of the principal
rules of this differential formalism is that anything that’s the product of two differentials can
be ignored. (The idea is that we will eventually divide everything by a single differential
and then let all infinitesimal quantities go to zero, so anything with two infinitesimal factors
will vanish even after we divide out one of them.) A similar argument allows us not to care
about the argument of fz = ∂w

∂z
and thus write

dw = fx(x, y, z) dx + fy(x, y, z) dy + fz(x, y, z) dz =
∂w

∂x
dx +

∂w

∂y
dy +

∂w

∂z
dz (2.13)

Note that this lets us calculate all the partial derivatives of w “at once”: Suppose w =
x2 + yz + z2. Then straightforward application of the chain and product rules fives us

dw = d(x2) + d(yz) + d(z2) = 2x dx+ z dy+ y dz + 2z dz = 2x dx+ z dy+ (y+ 2z) dz (2.14)

from which we can read off the partial derivatives

∂w

∂x
= 2x (2.15a)

∂w

∂y
= z (2.15b)

∂w

∂z
= y + 2z (2.15c)
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2.3 The Chain Rule

The chain rule as expressed by a mathematician is typically written as follows:
If f = g ◦ h is the function defined by the composition of g and h, i.e.,

f(x) = g(h(x)) (2.16)

then the derivative of f is given in terms of the derivatives of g and h by

f ′(x) = g′(h(x))h′(x) (2.17)

Written that way, it’s not exactly easy to remember. But let’s rewrite it in Leibniz notation.
First, for notational simplicity, let’s define

y = h(x) (2.18a)

and
z = f(x) = g(h(x)) = g(y) (2.18b)

Now in Leibniz notation,

dz

dx
= f ′(x) (2.19a)

dy

dx
= h′(x) (2.19b)

dz

dy
= g′(y) (2.19c)

and the chain rule (2.17) becomes
dz

dx
=

dz

dy

dy

dx
(2.20)

Again, the calculus-through-algebra outlook tells us that this is really obvious, since one can
just cancel out the dys.

Note that our notation as Physicists is also simpler in that we don’t need to define
separate functions f(x) and g(y); we’re usually interested more in the quantity z than in the
functional form of its relationship to x or y.

2.4 The Chain Rule in Multi-Variable Calculus

Note that the chain rule is not always as simple as straightforward algebra when functions
can depend on more than one variable. Consider the function w = F (t) = f(x, y, z) =
f(g(t), h(t), k(t)). Written as the function F (t), w depends only on one variable, so we can
define an ordinary derivative

dw

dt
= F ′(t) (2.21)
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while, if we see it as a function f(x, y, z) of three variables, we have to define partial deriva-
tives with respect to all three individually:

∂w

∂x
= fx(x, y, z) = lim

∆x→0

f(x + ∆x, y, z)

∆x
(2.22a)

∂w

∂y
= fy(x, y, z) = lim

∆y→0

f(x, y + ∆y, z)

∆y
(2.22b)

∂w

∂z
= fz(x, y, z) = lim

∆z→0

f(x, y, z + ∆z)

∆z
(2.22c)

Of course x = g(t), y = h(t), and z = k(t) are all functions of one variable, so they have
ordinary derivatives

dx

dt
= g′(t) (2.23a)

dy

dt
= h′(t) (2.23b)

dz

dt
= k′(t) (2.23c)

So how does the chain rule apply to this multi-variable problem? We have to consider
what happens when we make an infinitesimal change dt in t; we know that the corresponding
infinitesimal change in w will be, by definition,

dw = F (t + dt) − F (t) = F ′(t) dt =
dw

dt
dt (2.24)

On the other hand, the change in t will lead to changes in x, y and z according to (2.23):

dx = g′(t) dt (2.25a)

dy = h′(t) dt (2.25b)

dz = k′(t) dt (2.25c)

Substituting this into (2.13) gives

dw = fx(g(t), h(t), k(t)) g′(t) dt + fy(g(t), h(t), k(t))h′(t) dt + fz(g(t), h(t), k(t)) k′(t) dt
(2.26)

and comparing this to (2.24) gives the multi-variable chain rule. A Mathematician would
write this as the almost incomprehensible

F ′(t) = fx(g(t), h(t), k(t)) g′(t) + fy(g(t), h(t), k(t))h′(t) + fz(g(t), h(t), k(t)) k′(t) (2.27)

In Leibniz notation, however, this becomes

dw

dt
=

∂w

∂x

dx

dt
+

∂w

∂y

dy

dt
+

∂w

∂z

dz

dt
(2.28)

It’s almost as though we’ve “divided” (2.13) by dt. That’s not really what we’ve done, but
it’s a good way to remember the form of the equation.
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