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Tuesday, September 8, 2009

1 The Gamma Function

See Arfken & Weber, Chapter 8, especially Section 8.1
Something which will come up in the context of several special functions is the Gamma

function, defined for positive z as

Γ(z) =

∫ ∞
0

tz−1e−tdt (1.1)

To see why this is an interesting quantity, let’s step back and look at a few simpler integrals
first.

If α > 0, ∫ ∞
0

e−αtdt = −e
−αt

α

∣∣∣∣∞
0

=
1

α
. (1.2)

Next, think about ∫ ∞
0

t e−αtdt . (1.3)

We could integrate by parts, using
∫
u dv = uv −

∫
v du with u = t and dv = e−αtdt but

there’s a cute trick due to Richard Feynman. Since

∂

∂α
e−αt = −t e−αt (1.4)

we can write∫ ∞
0

t e−αtdt =

∫ ∞
0

(
− ∂

∂α
e−αt

)
dt = − d

dα

∫ ∞
0

e−αtdt = − d

dα

1

α
=

1

α2
(1.5)

and similarly ∫ ∞
0

t2 e−αtdt =

(
− d

dα

)2(
1

α

)
=

2

α3
(1.6)

and ∫ ∞
0

t3 e−αtdt =

(
− d

dα

)3(
1

α

)
=

3 · 2
α4

(1.7)

and in general ∫ ∞
0

tn e−αtdt =

(
− d

dα

)n(
1

α

)
=

n!

αn+1
(1.8)

for any non-negative integer n. (Note that the factorial is defined so that 0! = 1 and
(n+ 1)! = (n+ 1)n!.) We can now set α to 1 and see

n! =

∫ ∞
0

tn e−tdt = Γ(n+ 1) . (1.9)
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The integral definition of the Gamma function extends the meaning of the factorial to non-
integer numbers, and the Gamma function satisfies

Γ(z + 1) = zΓ(z) (1.10)

Γ(1) = 1 (1.11)

You might wonder why the Gamma function is defined so that Γ(n + 1) = n! with the
troublesome extra +1. This is so that Γ(z) is finite for all positive z. We know the integral
is well-behaved as t→∞ because the exponential kills the integrand faster than any power.
The integral will be finite if the part near t = 0 is well behaved, i.e., if

lim
ε→0

∫ ε

0

tz e−tdt = 0 (1.12)

but ∫ ε

0

tz e−tdt→
∫ ε

0

tz e−tdt =
tz

z

∣∣∣∣ε
0

=
εz

z
→ 0 when z > 0 (1.13)

On the other hand, we know that Γ(0) must blow up, since (1.10) tells us

1 = Γ(1) = 0Γ(0) . (1.14)

But, for example Γ(1/2) should be finite, even though it would seem to be the factorial of a
negative number (i.e., −1/2). In fact, we can use the change of variables x =

√
t; dx = 1

2
dt√
t

to calculate

Γ(1/2) =

∫ ∞
0

t−1/2e−tdt = 2

∫ ∞
0

e−x
2

dx =

∫ ∞
−∞

e−x
2

dx . (1.15)

This is another very famous integral, which can be done by another cool trick, using conver-
sion from Cartesian to polar coördinates in the plane:(

Γ(1/2)
)2

=

(∫ ∞
−∞

e−x
2

dx

)(∫ ∞
−∞

e−y
2

dy

)
=

∫ ∞
−∞

∫ ∞
−∞

e−x
2−y2dx dy

=

∫ 2π

0

∫ ∞
0

e−r
2

r dr dφ = 2π

∫ ∞
0

e−u
du

2
= π

(1.16)

(where in the last step we’ve used the substitution u = r2; du = 2r dr) so

Γ(1/2) =
√
π (1.17)

We can also extend the definition of Γ(z) to negative values according to

Γ(z − 1) =
Γ(z)

z − 1
(1.18)

it will blow up for negative integers (because Γ(0) blows up) but otherwise be fine. For
instance

Γ(−1/2) =
Γ(1/2)

−1/2
= −2

√
π . (1.19)
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For other non-integer arguments the values are tabulated and can be explored on a computer,
e.g.,
> ipython -pylab

from scipy.special import gamma

gamma(1)

gamma(2)

gamma(3)

gamma(4)

gamma(5)

gamma(37)/gamma(36)

gamma(10.16)/gamma(9.16)

gamma(0.5)

sqrt(pi)

gamma(-0.5)

-2.0*sqrt(pi)

figure()

z=linspace(0.001,5,500)

z1=linspace(-0.999,-0.001,100)

z2=linspace(-1.999,-1.001,100)

z3=linspace(-2.999,-2.001,100)

z4=linspace(-3.999,-3.001,100)

z5=linspace(-4.999,-4.001,100)

plot(z,gamma(z),'k-')

plot(z1,gamma(z1),'k-')

plot(z2,gamma(z2),'k-')

plot(z3,gamma(z3),'k-')

plot(z4,gamma(z4),'k-')

plot(z5,gamma(z5),'k-')

axis([-5,5,-10,10])

xticks(arange(-5,6))

yticks(arange(-10,11,2))

grid(1)

xlabel('$z$')

ylabel('$\Gamma(z)$')

savefig('gammafcn.eps')

The result looks like this:
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2 Differential Equations

See Arfken & Weber, Chapter 9

2.1 General Properties; Superposition

Many situations in astrophysics (and physics in general) are described by linear partial
differential equations, which we can write schematically as

Lψ(~r) = 0 (homogeneous PDE) (2.1)
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or
Lψ(~r) = ρ(~r) (inhomogeneous PDE) (2.2)

the differential operator can depend in potentially complicated ways on the coördinates, but
not on the scalar field ψ. If L is a linear differential operator, it implies the principle of
superposition: if ψ1 and ψ2 are solutions to the homogeneous PDE (2.1), so is aψ1 + bψ2:

L(c1ψ1 + c2ψ2) = c1��
�*0

Lψ1 + c2��
�*0

Lψ2 = 0 . (2.3)

The typical approach is to find a sufficient set of independent solutions {ψn} so that an
arbitrary solution can be written

ψ =
∑
n

cnψn (2.4)

and then fix the constants {cn} according to the boundary conditions of the problem.
Arfken has a list of differential equations that arise in physics, for example

1. the Laplace equation
∇2ψ = 0 (2.5)

2. the Poisson equation (e.g., Newtonian gravity)

∇2ψ = 4πρ (2.6)

3. the Helmholtz equation
(∇2 + k2)ψ = 0 (2.7)

4. the diffusion equation (
∇2 − 1

a2
∂

∂t

)
ψ = 0 (2.8)

5. the wave equation (
∇2 − 1

c2
∂2

∂t2

)
ψ = 0 (2.9)

etc etc. Notice that these all involve the Laplacian ∇2. (Some also involve time deriva-
tives, but if we write ψ(~r, t) =

∫∞
−∞ e

−iωtψω(~r) dt, the wave equation for ψ(~r, t) becomes the
Helmholtz equation for ψω(~r) with k = ω/c.) Since our goal is not to develop the full theory
of differential equations, but rather to become familiar with some of the solutions that come
up all the time in physics and astronomy, let’s look more into typical partial differential
equations involving the Laplacian in some common coördinate systems.
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2.2 The Laplacian; Separation of Variables

Recall from vector calculus that the Laplacian has the following forms in Cartesian coördinates
{x, y, z}, cylindrical coördinates1 {s, φ, z}, and spherical coördinates {r, θ, φ}:

∇2 = ~∇ · ~∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

=
∂2

∂s2
+

1

s

∂

∂s
+

1

s2
∂2

∂φ2
+

∂2

∂z2

=
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∂2

∂θ2
+

cot θ

r2
∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2

(2.10)

Note that

• Every term in (2.10) has units of one over length squared.

• I’ve expanded out some expressions like 1
s
∂
∂s

(
s ∂
∂s

)
and 1

r2 sin θ
∂
∂θ

(
sin θ ∂

∂θ

)
compared to

the forms in Arfken.

2.2.1 Cartesian Coördinates

For concreteness, we’ll the Helmholtz equation(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

)
ψ(x, y, z) = 0 . (2.11)

A standard method for converting a partial differential equation into a set of ordinary dif-
ferential equations is separation of variables, to look for a solution of the form

ψ(x, y, z) = X(x)Y (y)Z(z) . (2.12)

(Remember that we plan to use superposition to combine different solutions, so we’re not
making such a restrictive assumption on the form of the general solution.) Substituting
(2.12) into (2.11) and dividing by ψ gives us

X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
+
Z ′′(z)

Z(z)
+ k2 = 0 (2.13)

Since the first term depends only on z, the second only on y and the third only on z, the
only way the equation can be satisfied in general is if each of them is a constant:

X ′′(x)

X(x)︸ ︷︷ ︸
=−k2x

+
Y ′′(y)

Y (y)︸ ︷︷ ︸
=−k2y

+
Z ′′(z)

Z(z)︸ ︷︷ ︸
=−k2z

+k2 = 0 (2.14)

1What to call the cylindrical radial coördinate
√
x2 + y2 is a perpetually troubling issue. It’s clearly

inappropriate to call it r in a three-dimensional context, since that means something different in spherical
coördinates. Arfken calls it ρ, but that can get confusing if ρ is also used as a density. I’ll follow the
convention of Griffiths’s Introduction to Electrodynamics and call it s.
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so we can solve the original PDE if X, Y , and Z satisfy2

X ′′(x) + k2xX(x) = 0 (2.15a)

Y ′′(y) + k2yY (y) = 0 (2.15b)

Z ′′(z) + k2zZ(z) = 0 . (2.15c)

Each of these, (2.15a) for example, is a pretty simple and familiar ODE. Since it’s second
order, we know there are two independent solutions for a given kx, and they are

X(x) ≡
{
eikxx

e−ikxx

}
or equivalently

{
sin kxx
cos kxx

}
(2.16)

What values are allowed for {kx, ky, kz} depend on things like the boundary conditions for
the problem. Note that kx, ky and kz all have units of inverse length.

2.2.2 Cylindrical Coördinates

Now the PDE is (
∂2

∂s2
+

1

s

∂

∂s
+

1

s2
∂2

∂φ2
+

∂2

∂z2
+ k2

)
ψ(s, φ, z) = 0 (2.17)

and guessing a separable solution

ψ(s, φ, z) = S(s)Φ(φ)Z(z) (2.18)

gives the equations

S ′′(s)

S(s)
+

1

s

S ′(s)

S(s)
+

1

s2
Φ′′(φ)

Φ(φ)
+
Z ′′(z)

Z(z)
+ k2 = 0 (2.19)

The separation is slightly trickier this time. We can handle the z dependence the same as
before, and write

Z ′′(z)

Z(z)
= −k2z . (2.20)

Everything else has some s dependence in it, but if we multiply through by s2 we get

s2
S ′′(s)

S(s)
+ s

S ′(s)

S(s)
+ (k2 − k2z)s2 +

Φ′′(φ)

Φ(φ)
= 0 . (2.21)

Now the last term depends only on φ and we can set it to a constant, call it −m2. Again,
the simple ODE

Φ′′(φ) +m2Φ(φ) = 0 (2.22)

has the solution
Φ(φ) = eimφ . (2.23)

2We’ve implicitly assumed each constant is negative by writing them as −k2x etc. Depending on the
problem, we may find that some of them should actually be positive, but this can always be handled by
allowing e.g., kx to be imaginary in the end.
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But in a physical problem, φ is an angular coördinate with a period of 2π, so if the solution
to the PDE is to be single-valued, we have to enforce

Φ(φ+ 2π) = Φ(φ) . (2.24)

This means we know the conditions on m:

m must be an integer

So we’re back to the non-trivial ODE for s:

s2S ′′(s) + sS ′(s) +
[
(k2 − k2z)s2 −m2

]
S(s) = 0 . (2.25)

It looks like the z and φ equations have stuck us with a two parameter family of possible
ODEs for the s dependence, but that’s not really true. m is a dimensionless parameter (in
fact we know it has to be an integer in most physical problems) but k2−k2z has dimensions of
inverse length squared. That means it really just sets the scale of the s dependence, and we
can get a simpler differential equation by changing variables to x = s

√
k2 − k2z and defining

y(x) = S(s); since this is just a rescaling,

s
d

ds
= x

d

dx
(2.26)

and the differential equation becomes

x2y′′(x) + xy′(x) +
[
x2 −m2

]
y(x) = 0 . (2.27)

This is Bessel’s equation, and the two independent solutions to it are called Bessel functions
Jm(x) and Nm(x).

2.3 Spherical Coördinates

In spherical coördinates, the PDE is(
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∂2

∂θ2
+

cot θ

r2
∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2
+ k2

)
ψ(r, θ, φ) = 0 (2.28)

and the search for a separated solution

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) (2.29)

gives us

R′′(r)

R(r)
+

2

r

R′(r)

R(r)
+

1

r2
Θ′′(θ)

Θ(θ)
+

cot θ

r2
Θ′(θ)

Θ(θ)
+

1

r2 sin2 θ

Φ′′(φ)

Φ(φ)
+ k2 = 0 (2.30)

As before, the φ dependence is

Φ(φ) = eimφ m ∈ Z (2.31)
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so multiplying by r2 gives us

r2
R′′(r)

R(r)
+ 2r

R′(r)

R(r)
+ k2r2︸ ︷︷ ︸

`(`+1)

+
Θ′′(θ)

Θ(θ)
+ cot θ

Θ′(θ)

Θ(θ)
− m2

sin2 θ︸ ︷︷ ︸
−`(`+1)

= 0 (2.32)

where by separating the left-hand side into a piece depending only on r and a piece depending
only on θ we know that each has to be a constant. We’ve written that constant rather
provocatively, but it’s because the angular equation

Θ′′(θ) + cot θΘ′(θ) +

(
`(`+ 1)− m2

sin2 θ

)
Θ(θ) = 0 (2.33)

turns out to have geometrically sensible solutions only when

|m| ≤ ` ∈ Z (2.34)

These are the associated Legendre functions Pm
` (cos θ) (and Qm

` (cos θ)) and they are part of
the spherical harmonics Y m

` (θ, φ) = Pm
` (cos θ)eimφ which we’ll come back to later.

Look instead at the radial equation

r2R′′(r) + 2rR′(r) +
[
k2r2 − `(`+ 1)

]
R(r) = 0 (2.35)

Again, the dimensionful parameter k can be scaled away, but the dimensionless parameter `
cannot. Setting x = kr and y(x) = R(r) gives us

x2y′′(x) + 2xy′(x) +
[
x2 − `(`+ 1)

]
y(x) = 0 (2.36)

This is not quite Bessel’s equation (2.27) but a little bit of algebra shows that if we write

η(x) = y(x)
√
x (2.37)

then η(x) solves the differential equation

x2η′′(x) + xη′(x) +

[
x2 −

(
`+

1

2

)2
]
η(x) = 0 (2.38)

which is Bessel’s equation if we replace the integer m with the non-integer value `+ 1
2
.

So Bessel functions, thought of now as the solutions to

x2y′′(x) + xy′(x) +
[
x2 − ν2

]
y(x) = 0 . (2.39)

for a particular (not necessarily integer) ν are going to be important!
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Thursday, September 10, 2009

3 Bessel Functions

See Arfken & Weber, Chapter 9 (especially sec 9.5-9.6) and Chapter 11
We saw last time that the differential equation

x2y′′(x) + xy′(x) +
[
x2 − ν2

]
y(x) = 0 . (3.1)

comes up in problems involving the Laplacian in cylindrical coördinates, and is also relevant
to some problems in cylindrical coördinates. This is the Bessel equation, and its solutions
are called Bessel Functions. All of the following are defined for any real number ν, and solve
(3.1) for that ν:

Jν(x) Bessel functions, also known as Bessel functions of the first kind

Nν(x) Neumann functions, also known as Bessel functions of the second kind, and also written
Yν(x)

H
(1,2)
ν (x) Hankel functions

Not all of them are independent, but which combinations make a full set depend on the
value of |ν|. Note that, for example, Jν(x) and J−ν(x) solve the same differential equation,
but they are defined differently.

But does naming something really give us any power over it? Many many differen-
tial equations have solutions which can be written as hypergeometric functions, but calling
something a hypergeometric function doesn’t really give us any insight. We gain insight into
special functions by studying their properties. For example, we deal with sines and cosines
enough that realizing that a result can be written as a trigonometric function tells us a lot
about it.

3.1 Power Series Expansions

One of the ways we understand transcendental functions like sines, cosines and exponentials
is to write them as power series, like

ex =
∞∑
n=0

xn

n!
(3.2a)

cosx =
∞∑
n=0

(−1)n
x2n

(2n)!
(3.2b)

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
(3.2c)

these allow us to show, for example, that

eix = cosx+ i sinx (3.3)
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So we’ll look to write a solution to (3.1) as a power series

y(x) =
∞∑
n=0

anx
s+n . (3.4)

We require a0 6= 0 so that s is the lowest power of x appearing in the series. By substituting

y′(x) =
∞∑
n=0

an(s+ n)xs+n−1 (3.5a)

y′′(x) =
∞∑
n=0

an(s+ n)(s+ n− 1)xs+n−2 (3.5b)

into (3.1) we find

0 = x2y′′ + xy′ + (x2 − ν2)y

=
∞∑
n=0

an

{
xs+n

[
(s+ n)(s+ n− 1) + (s+ n)︸ ︷︷ ︸

(s+n)2

−ν2
]

+ xs+n+2
}

= a0x
s(s2 − ν2) + a1x

s+1[(s+ 1)2 − ν2] +
∞∑
n=2

xs+n
{[

(s+ n)2 − ν2
]
an + an−2

} . (3.6)

For (3.4) to be a solution, the coëfficient of each power of x has to vanish.
The lowest term gives us what is known as the indicial equation

a0(s
2 − ν2) = 0 ; (3.7)

since a0 6= 0 by definition, that means the two possibilities are s = ν and s = −ν. In
principle these can be two different solutions, but that’s fine, since we expect a second order
ODE to have two independent solutions.

Replacing ν2 with s2 and looking at the next term, we get

0 = a1[(s+ 1)2 − s2] = a1(2s+ 1) (3.8)

So, except for the special case s = −1/2 (which is only a possible solution if ν2 = 1/4), we
have to have a1, which means there is no xs+1 term.3

Requiring each of the other terms to vanish gives us a relationship among the ans:[
(s+ n)2 − ν2

]
an + an−2 = 0 (3.9)

This recursion relation can be used to work out the general form of the series:

y(x) =
∑
n=0

(−1)k
a02

s Γ(s+ 1)

k! Γ(s+ k + 1)

(x
2

)s+2k

(3.10)

3In the case s = −1/2, the lowest term goes like x−1/2, and the term which is not ruled out by (3.8).
But for ν2 = 1/4 the other solution starts with the x1/2 term, and it turns out allowing a1 6= 0 for s = −1/2
would just end up mixing in some of the s = 1/2 solution. So even in the one case where we’re not forced
to have a1 = 0 we can choose to do it anyway, and everything will work out.
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Note that we have written
n∏
k=1

(s+ k) =
Γ(s+ k + 1)

Γ(s+ 1)
; (3.11)

if s is an integer, this is just (s+ k)!/s! but the Gamma function allows us to generalize this
to non-integer s.

The standard normalization convention is to choose

a0 =
1

2s Γ(s+ 1)
(3.12)

so that the Bessel Function (of the First Kind) is defined as

Js(x) =
∞∑
k=0

(−1)k

k! Γ(s+ k + 1)

(x
2

)s+2k

(3.13)

This is the definition for any real s. Bessel’s equation (3.1) is satisfied for a given ν by
both Jν(x) and J−ν(x). For non-integer ν these are the two independent solutions to the
second-order ODE; one starts at x−ν and the other at xν .

For integer ν it turns out that J−ν(x) is just a multiple of Jν(x). Why is that? Well, for
ν = 0, −ν and ν are the same thing. For a positive integer n,

J−n(x) =
∞∑
k=0

(−1)k

k! Γ(k + 1− n)

(x
2

)2k−n
. (3.14)

For k = 0, 1, . . . , n − 1, the denominator has a Gamma function of a non-positive integer,
which we learned the other day blows up, so those coëfficients are actually zero. That means
the sum is

J−n(x) =
∞∑
k=n

(−1)k

k! (k − n)!

(x
2

)2k−n
=
∞∑
`=0

(−1)`+n

(`+ n)! `!

(x
2

)2`+n
= (−1)nJn(x) (3.15)
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3.1.1 Numerical Implementations

As common functions, Jν(x) are implemented
in your favorite mathematical computation en-
vironment. For instance, in SciPy’s special
function package:a

> ipython -pylab

from scipy.special import *

x=linspace(0.0001,10,1000)

plot(x,jn(0,x),'k-',label='$J_0(x)$')

plot(x,jn(1,x),'r--',label='$J_1(x)$')

plot(x,jn(2,x),'b-.',label='$J_2(x)$')

legend()

xlabel('$x$')

ylabel('$J_n(x)$')

axis([0,10,-1.1,1.1])

grid(True)

savefig('besselJ.eps',bbox_inches='tight')

aThe list of special function names is at
http://docs.scipy.org/doc/scipy/reference/special.html
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3.2 Neumann Functions

In order to get two independent solutions, one defines the Neumann Functions or Bessel
Functions of the Second Kind, written Nν(x) or sometimes Yν(x). The definition is

Nν(x) =

{
cosπνJν(x)−J−ν(x)

sinπν
ν /∈ Z

1
π

(
∂Jν(x)
∂ν
− (−1)ν ∂J−ν(x)

∂ν

)
ν ∈ Z

(3.16)

You will explore the properties of these functions further on the homework, in particular
showing that

• Nn(x) solves Bessel’s equation even for integer n

• Nn(x), for non-negative integer n, contains powers of x starting at x−n, and also terms
involving lnx

It’s the presence of the logarithmic terms that explains why we didn’t find Nn(x) when we
were looking for power series solutions. It also means there’s not an explicit form of Nn(x)
that’s worth writing down, but we do see that Nn(x) diverges at x = 0, logarithmically for
n = 0 and like x−n otherwise.
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We can see this behavior in SciPy:

> ipython -pylab

from scipy.special import *

x=linspace(0.0001,10,1000)

plot(x,yn(0,x),'k-',label='$N_0(x)$')

plot(x,yn(1,x),'r--',label='$N_1(x)$')

plot(x,yn(2,x),'b-.',label='$N_2(x)$')

legend()

xlabel('$x$')

ylabel('$N_n(x)$')

axis([0,10,-1.1,1.1])

grid(True)

savefig('neumann.eps',bbox_inches='tight')
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For any ν2 ≥ 0, picking ν ≥ 0 for convenience, Jν(x) and Nν(x) provide two independent
solutions to Bessel’s equation.
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Tuesday, September 15, 2009

3.3 Example: Wave Equation in 2d Polar Coördinates

Let’s start with the wave equation in 2+1 dimensions, written in terms of the polar coördinates
(r, φ) and of time. (We could do this in cylindrical coördinates [in which case r would be
called s] but we’d just be carrying around the extra z dependence.) We know that the wave
equation

∇2ψ − 1

c2
∂2ψ

∂t2
= 0 (3.17)

has solutions (choose one from each column){
Jm(kr)
Nm(kr)

}{
cosmφ
sinmφ

}{
cos kct
sin kct

}
(3.18)

where m is a non-negative integer and k is non-negative real number.
To figure out what coëfficients go in the superposition, we need to satisfy the boundary

conditions of the problem. E.g., consider the case where ψ vanishes on a circular outer
boundary r = a

ψ(a, φ, t) = 0 (3.19)

and look for the solution for 0 ≤ r ≤ a. This would describe, e.g., the oscillations of a drum
of radius a. Since r = 0 is included, we know the coëfficients of any terms involving the
Neumann functions have to vanish (or else ψ would blow up at the origin) so we’re left with
solutions of the form

Jm(kr)

{
cosmφ
sinmφ

}{
cos kct
sin kct

}
(3.20)

To satisfy the boundary conditions at all φ and t, we’re not allowed to choose arbitrary k; for
a given term in the superposition we need one that has Jm(ka) = 0. We know from plotting
the Bessel functions that they oscillate, so we define the positive values of their arguments
for which they cross zero as γmn i.e.,

Jm(γmn) = 0 ; (3.21)

γmn is the nth zero of the mth Bessel function. There’s no closed-form expression for these,
but they’re tabulated.

The solutions we want are thus superpositions of

Jm

(γmn
a
r
){cosmφ

sinmφ

}{
cos γmn

a
ct

sin γmn
a
ct

}
n = 1, 2, . . . ; m = 0, 1, 2, . . . (3.22)

To nail down all the coëfficients, we need to know initial conditions on the waves, e.g.,
ψ(r, φ, 0) and ψ̇(r, φ, 0); for concreteness, we can assume we deform the drumhead into some
shape and then release it, so that

ψ(r, φ, 0) = f(r, φ) (3.23)

ψ̇(r, φ, 0) = 0 (3.24)
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where f(r, φ) is some specified function. The ψ̇ condition means the solutions are of the
form

Jm

(γmn
a
r
){cosmφ

sinmφ

}
cos

γmn
a
ct n = 1, 2, . . . ; m = 0, 1, 2, . . . (3.25)

and we can write the solution explicitly as

ψ(r, φ, t) =
∞∑
m=0

∞∑
n=1

Jm

(γmn
a
r
)

(Amn cosmφ+Bmn sinmφ) cos
γmn
a
ct (3.26)

and we impose the boundary conditions by choosing {Amn} and {Bmn} so that

f(r, φ) =
∞∑
m=0

∞∑
n=1

Jm

(γmn
a
r
)

(Amn cosmφ+Bmn sinmφ) (3.27)

This is called a Fourier-Bessel series. The Fourier part is hopefully somewhat familiar and
can be inverted by use of identities like∫ 2π

0

sinm1φ sinm2φ dφ =

{
π m1 = m2 6= 0

0 m1 6= m2

. (3.28)

The Bessel part turns out to be handled with the identity∫ a

0

Jm

(γmn1

a
r
)
Jm

(γmn2

a
r
)
dr = 0 if n1 6= n2 (3.29)

which we can deduce from the Bessel equation. Recall that for a given k and m, Jm(kr)
satisfies

0 =

[
r2
d2

dr2
+ r

d

dr
+ (k2r2 −m2)

]
Jm(kr) = r

[
d

dr

(
r
dJm(kr)

dr

)
+
(
k2r − m

r

)
Jm(kr)

]
(3.30)

Taking the equation for k = k1 and multiplying through by Jm(k2r) we get

0 = Jm(k2r)
d

dr

(
r
dJm(k1r)

dr

)
+
(
k21r −

m

r

)
Jm(k2r)Jm(k1r) (3.31)

If we integrate this with respect to r from r = 0 to r = a, we get

0 =

[
(Jm(k2r)) r

(
dJm(k1r)

dr

)]a
0

−
∫ a

0

(
dJm(k2r)

dr

)
r

(
dJm(k1r)

dr

)
dr

+

∫ a

0

(
k21r −

m

r

)
Jm(k2r)Jm(k1r) dr

, (3.32)

where we’ve integrated the first term by parts. Switching k1 and k2 and subtracting gives us

0 =

[
rJm(k2r)

(
dJm(k1r)

dr

)]a
0

−
[
rJm(k1r)

(
dJm(k2r)

dr

)]a
0

+ (k21−k22)

∫ a

0

Jm(k1r)Jm(k2r) dr

(3.33)
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Now we can specialize to the case where k1 = γmn1/a and k2 = γmn2/a; that makes the
contribution to the first two terms from r = a vanish (the contribution from r = 0 already
vanishes because of the factor of r) and we get

0 =
γ2mn1

− γ2mn2

a2

∫ a

0

Jm

(γmn1

a
r
)
Jm

(γmn2

a
r
)
dr (3.34)

and so we see that indeed∫ a

0

Jm

(γmn1

a
r
)
Jm

(γmn2

a
r
)
dr = 0 if k1 6= k2 (3.35)

3.4 Asymptotic Behavior

Bessel functions of half-integer order do have a simpler, more familiar form. Using the
identity

Γ(k + 1)Γ(k + 1/2) =
Γ(2k + 1)

√
π

22k
=

(2k)!
√
π

22k
(3.36)

(which is not hard to show starting with Γ(1/2) =
√
π) we can show

J−1/2(x) =

√
2

πx

∞∑
k=0

(−1)k

(2k)!
x2k =

√
2

πx
cosx (3.37)

and along similar lines

J1/2(x) =

√
2

πx
sinx (3.38a)

N1/2(x) = −J−1/2(x) = −
√

2

πx
cosx (3.38b)

That turns out to be the key to understanding how the Bessel (and Neumann) functions
behave at large x; we can define Jν(x) so that

Jν(x) =

√
2

πx
Jν(x) (3.39)

and then Bessel’s equation (3.1) is equivalent (after applying the product rule and some
algebra)

J ′′ν +

(
1− ν2 − 1/4

x2

)
Jν = 0 (3.40)

So, for ν = 1/2 this tells us that Jν can be a sine or cosine of x, which we’ve just found
explicitly. But for large x we also get

J ′′ν (x) + Jν
x→∞−→ 0 . (3.41)

It turns out that the phase of the trig function in the asymptotic form is given by

Jν
x→∞−→

√
2

πx
cos

(
x− (2ν + 1)π

4

)
(3.42)

but the tools needed to show that are beyond what we can delve into in a timely fashion.
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3.5 Hankel Functions

Using the asymptotic form of Jν(x) and the definition of Nν(x) you can show that the
Neumann function has asymptotic form

Nν(x)
x→∞−→

√
2

πx
sin

(
x− (2ν + 1)π

4

)
. (3.43)

Far from the origin, then, these look like trig functions with decaying amplitudes. But just
as it’s convenient sometimes to work with eikx and e−ikx rather than cosx and sinx, we
might find a complex combination of the Bessel and Neumann functions useful. These are
the Hankel functions

H(1)
ν (x) = Jν(x) + iNν(x) (3.44a)

H(2)
ν (x) = Jν(x)− iNν(x) ; (3.44b)

evidently they have the asymptotic forms

H(1)
ν (x) =

x→∞−→
√

2

πx
exp

(
i

[
x− (2ν + 1)π

4

])
(3.45a)

H(2)
ν (x) =

x→∞−→
√

2

πx
exp

(
−i
[
x− (2ν + 1)π

4

])
. (3.45b)

3.6 Spherical Bessel Functions

The trick of multiplying a solution to Bessel’s equation by a power of x to get a solution to
a slightly different differential equation can be used to define the Spherical Bessel Functions

j`(x) =

√
2

πx
J`+1/2(x) (3.46a)

n`(x) =

√
2

πx
N`+1/2(x) (3.46b)

h
(1)
` (x) =

√
2

πx
H

(1)
`+1/2(x) (3.46c)

h
(2)
` (x) =

√
2

πx
H

(2)
`+1/2(x) (3.46d)

These are not solutions to Bessel’s equation, but rather to the equation

x2y′′(x) + 2xy′(x) +
[
x2 − `(`+ 1)

]
y(x) = 0 (3.47)

which we saw arises in the context of separating the Helmholtz equation in spherical coördinates.
Note that from the known forms of J1/2(x) and N1/2(x), we can write

j0(x) =
sinx

x
(3.48a)

n0(x) = −cosx

x
(3.48b)
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The higher orders are not quite so simple, but they still can be writen as finite sums of trig
functions and powers:

j`(x) = (−x)`
(

1

x

d

dx

)`(
sinx

x

)
(3.49a)

n`(x) = (−x)`
(

1

x

d

dx

)` (
−cosx

x

)
(3.49b)

Thursday, September 17, 2009

4 Sturm-Liouville Theory

Last time we showed that∫ a

0

Jm(k1s) Jm(k2s) s ds = 0 if k1 6= k2 & Jm(k1a) = 0 = Jm(k2a) (4.1)

by manipulating the differential equation[
1

s

d

ds

(
s
d

ds

)
− m2

s2
+ k2

]
Jm(ks) = 0 . (4.2)

This was not just a bit of isolated magic. You can do things like this in general, as an
application of Sturm-Liouville theory. It can be understood by analogy to the eigenvalue
problem in linear algebra:

Linear Algebra Vector u Square Matrix A
Functional Analysis Function u(x) Linear operator L

Let’s recall a few results about the eigenvalue problem in linear algebra

Au = λu . (4.3)

First, recall the inner product
〈u,v〉 = u†v (4.4)

where u† is the adjoint of u, i.e., the complex conjugate of its transpose, so in four dimensions
u1
u2
u3
u4


†

=
(
u∗1 u∗2 u∗3 u∗4

)
. (4.5)

The adjoint A† of a square matrix A has a handy property:

〈u,A†v〉 = u†A†v = (Au)†v = 〈Au,v〉 (4.6)

In the context of linear algebra, this is a simple identity, but in more abstract vector spaces
(e.g., infinite-dimensional ones) this can act as the definition of the adjoint of an operator.
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In a function space, where the “vectors” are sufficiently well-behaved functions on the
interval x ∈ [a, b], one inner product that can be defined is

〈u, v〉 =

∫ b

a

u∗(x) v(x)w(x) dx (4.7)

where we have allowed a real weighting function w(x) to be included in the measure w(x) dx.
Now, if L is a linear operator (e.g., a differential operator)

〈u,Lv〉 =

∫ b

a

u∗(x)Lv(x)w(x) dx (4.8)

and

〈u,L†v〉 =

∫ b

a

[Lu∗(x)] v(x)w(x) dx . (4.9)

If we recall that in linear algebra, a self-adjoint (also known as Hermitian) matrix, for which
A† = A has the nice property that eigenvectors corresponding to different eigenfunctions
are orthogonal, i.e., if

Au1 = λ1u1 (4.10a)

Au2 = λ2u2 (4.10b)

then
〈u1,u2〉 = 0 if λ1 6= λ2 ; (4.11)

The same thing is true of the eigenfunctions of a self-adjoint linear operator. (The demon-
stration is identical to the demonstration from linear algebra.)

So in the case of Bessel functions,

L =
1

s

d

ds

(
s
d

ds

)
− m2

s2
, (4.12)

w(s) = s, and the eigenvalue equation is

LJm(ks) = −k2Jm(ks) . (4.13)

The demonstration that L is Hermitian is that∫ b

a

u(s)Lv(s) s ds =

∫ b

a

[Lu(s)] v(s) s ds (4.14)

where u(s) and v(s) are real functions that satisfy the boundary conditions

u(0) is regular (4.15a)

u(a) = 0 (4.15b)

The demonstration is similar to what we did in class last time, and involves integrating by
parts twice.
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Tue & Thu, September 22 & 24, 2009 (guest lectures by Joshua Faber)

5 Elliptic and Hyperbolic equations: an overview

Consider a second order differential equation in a k-dimensional space:

k∑
m=0

k∑
n=0

Amn
∂

∂xm

(
∂f

∂xn

)
+

N∑
p=0

Bp
∂f

∂xp
= F (x) (5.1)

If the matrix A is positive definite everywhere, we call the equation “elliptic”.
Positive definite implies all eigenvalues of the matrix are positive. Rather than focus

on the matrix aspects, we can concentrate on the physical examples. The most famous
elliptic equation is the Poisson equation, which describes, among other things, Newtonian
gravitational and electric fields:

∇2Φ =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Φ = 4πGρ (5.2)

You’ve already seen that the left hand side takes different forms in different coordinate
systems, but all are elliptic.

Hyperbolic equations look much the same if the sign of one of the terms is negative, as
we find in the wave equation:

∂2f

∂t2
− v2∂

2f

∂x2
= 0 (5.3)

From the standpoint of working with the equations, they could hardly be more different.
Hyperbolic equations evolve forward in time (or whatever you name the variable with the
opposite signature in the second derivative, and require the specification of initial data (values
of the function f and its first derivative), and possibly boundary conditions depending on the
particular equation, solution, domain, and numerical scheme. These are generally referred
to as “Initial Value Problems”. On the boundary of our domain, we need to impose some
form of boundary condition, which typically comes in one of three types:

1. Dirichlet: f(x) is a specified function on the boundary

2. Von Neumann: ∇Nf(x) is specified on the boundary, where the gradient is taken
normal to the boundary

3. Robin: H[f(x),∇Nf(x)], some function of the value of the function and its normal
gradient, is specified on the boundary

The boundary can be any surface, including one located at spatial infinity.

5.1 Elliptic Equations

There are two typical general ways to solve elliptic equation in the numerical sense. One is
to deal with the values at a set of convenient points in space, and the other is to break the
solution into a basis set of independent functions, typically orthogonal polynomials, and to
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work out what the coefficients must be. When dealing with points, the natural configuration
to consider is a grid, ideally one adapted to the computational domain appropriate to the
problem. For instance, if we have a circular domain in 2 dimensions, the natural grid is given
in terms of s and φ. Under this mapping the grid becomes rectangular.

To begin our numerical investigation, the easiest grid configuration is a set of evenly
spaced points. We need to determine how to express differential operators in a useful form.
Since derivatives fundamentally involve the variation of functions over space, we know that
the points will be linked. Moreover, since differential operator are linear, we would be wise
to consider a matrix-based approach. Let us assume that

D

[
∂2

∂x2
,
∂

∂x

]
f = u (5.4)

where D is a differential operator that includes first and/or second derivatives and u is the
RHS. The problem can be written Dij[f

i] = uj, where u is a vector of length N containing
the RHS expressions evaluated at the N points, and Dij is an N ×N matrix containing the
as-yet undetermined coefficients. To evaluate a first derivative, we can make use of the fact
that we know

df

dx
= lim

h→0

f(x+ h)− f(x− h)

2h
(5.5)

Obviously, when solving a problem numerically, limits never go to zero, so we instead evaluate

df

dx
=
f(x+ a)− f(x− a)

2a
(5.6)

where a is the grid spacing. In the limit that a → 0, this reproduces the first derivative
exactly. For finite values of a, it represents an approximation. In terms of our matrix
operator, we find Dk+1,k = (2h)−1 = −Dk−1,k.

This expression works well in the interior of the grid, but it can’t be applied at either
boundary, since we don’t have points in both directions to evaluate. We could consider one
sided derivatives, evaluating the following terms

x1 :
df

dx
≈ f(x2)− f(x1)

a
(5.7a)

xN :
df

dx
≈ f(xN)− f(xN−1)

a
(5.7b)

but there is a problem. If we wanted to solve df
dx

= u, we get the following matrix equation:

1

2h


−2 2
−1 0 1
...

...
. . .

...
...

−1 0 1
−2 2




f(x1)
f(x2)

...
f(xN−1)
f(xN)

 =


u(x1)
u(x2)

...
u(xN−1)
u(xN)

 (5.8)

which has a solution f = D−1u. It can be shown, though, that the matrix Dij written like
we did above is singular, i.e., it has determinant zero, and cannot be inverted. Indeed, if we
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label the rows of the metrix Ri, we find that

N−1∑
i=2

(−1)iRi = 0.5(R1 ±RN) (5.9)

indicating that the rows are not linearly independent (the sign of the term for the last row is
positive if we have an odd number of rows, and negative for even). This is not a surprise, since
we have made no attempt whatsoever yet to impose boundary conditions. For this first-order
equation, the only boundary condition we can impose is Dirichlet (the first-derivatives are
explicitly given by the equation itself). We can impose such a condition at either boundary,
but not both, since the condition at either boundary completely specifies the solution to the
equation.

For second-order differential equations, we need to be able to express d2f/dx2 in terms
of values at neighboring points. It can be shown that

d2f

dx2
= lim

h→0

f(x+ h)− 2f(x) + f(x− h)

h2
(5.10)

so we may again approximate this by an expression where we assume the stepsize is finite:

d2f

dx2
≈ f(x+ a)− 2f(x) + f(x− a)

a2
(5.11)

which in matrix terms looks like the following:

∂2f

∂x2
=

1

2h


B.C.

1 −2 1
...

...
. . .

...
...

1 −2 1
B.C.

 (5.12)

where “B.C.” indicates that a boundary condition needs to be applied, rather than an ex-
pression representing a second derivative.

For practical applications, these stencils, as they are known, do not always work suffi-
ciently well. In particular, they produce second-order accuracy: the overall magnitude of
the error E between a numerical solution and the exact one will generally scale such that
E ∝ h2. In order to cut your error bya factor of 100, you need to use 10 times as many
points, and thus invert a matrix which 100 times as many points, a process that takes 1000
times longer using even the best algorithms. In many cases, we’d like to do much better.

Let us write the first-derivative differencing stencil as d1(f, h) = [f(h)− f(−h)]/(2h). It
is trivial to check that when applied to a constant function F0(x) = x0 = 1, d1(F0, h) = 0
for all possible choices of the stepsize h. When applied to a linear function, F1(x) = x, we
find d1(F1, h) = 1, which is good, since a first derivative had better correctly measure the
slope of a linear function. Even better yet, when applied to a quadratic function, F2 = x2,
we find d1(F2, h) = 0. This means that for any function whose Taylor series near a point
can be expressed as f(x) = c0 + c1x + c2x

2, we will measure the first derivative correctly
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using d1. Unfortunately, most functions do not have Taylor series that terminate, and it is
easily checked that d1(F3) = h2. Higher-order odd terms also make contributions. This is
the source of the numerical error: a differencing stencil applied to a cubic function returns a
slope even where the cubic has slope zero. The error scaling E ∝ h2 results from this term.

Such a flaw in our algorithm is not unavoidable, since we can include more points in order
to correct the error in the cubic term. Letting a−2, a−1, a0, a1, and a2 be the coefficients of the
terms in the differencing operator, such that dk =

∑
k akf(kh). The second order expression

above had a1 = 1/(2h), a0 = 0, and a−1 = −1/(2h). If we allow for five coefficients, we can
fix five equations, so that d1(F0) = d1(F2) = d1(F3) = d1(F4) = 0 and d1(F1) = 1, as we
would expect for a first derivative.

F0 : a−2 + a−1 + a0 + a1 + a2 = 0 (5.13a)

F1 : −2ha−2 +−ha−1 + ha1 + 2ha2 = 1 (5.13b)

F2 : 4h2a−2 + h2a−1 + h2a1 + 4h2a2 = 0 (5.13c)

F3 : −8h3a−2 − h3a−1 + h3a1 + 8h3a2 = 0 (5.13d)

F4 : 16h4a−2 + h4a−1 + h4a1 + 16h4a2 = 0 (5.13e)

The equations for F0, F2, and F3 are sufficient to establish that a0 = 0 and a−i = −ai.
From the equation for F3, we see a2 = −a1/8, and finally from the equation for F1, we see
that a1 = 2/(3h) and a2 = −1/(12h). The fourth-order centered first derivative operator is
indeed

d
(4)
1 =

1

12h
[f(−2h)− 8f(−h) + 8f(h)− f(2h)] (5.14)

6 The Poisson equation

It is not difficult to find ways to solve the Poisson equation, which arises for both gravitational
fields and electric fields in Newtonian physics. In some ways, the problem is choosing a
method.

We can use:

1. Convolution

2. multipole moments (for the exterior)

3. Spectral methods

We will discuss the first two in turn.

6.1 Convolution

Mathematically speaking, convolution is the most elegant approach to the solution of the
Poisson equation. We begin with a know integral form of the solution to the Poisson equation:

∇2Φ = 4πGρ(x)⇒ Φ =

∫
Gρ(x′)

|x− x′|
d3x′ (6.1)
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The key thing to notice is that we have one term involving a function of the variable we
are integrating over (x′), and one that depends on a difference between a fixed point in the
integral (x) and the integration variable (x′). In general, there is a simple way to solve these
problems using Fourier transforms, where we will make use of the fact that Fourier forward
and reverse transforms are inverse operations.

Denoting the forward Fourier transform F{g(x)} =
∫∞
−∞ e

2πikxg(x) dx, and considering
the case of one-dimensional integrals, we find that

F{Φ(x)} = G

∫ ∞
−∞

dxe2πikx
∫ ∞
−∞

dx′ρ(x′) |x− x′|−1 (6.2)

Letting y = x− x′, we find x = x′ + y, and dx dx′ = dx′ dy and the integral becomes

F{Φ(x)} = G

∫ ∞
−∞

∫ ∞
−∞

dy dx′ e2πik(x
′+y)ρ(x′) |y|−1

= G

(∫ ∞
−∞

dx′ e2πikx
′
ρ(x′)

)(∫ ∞
−∞

dy e2πiky |y|−1
)

= F{ρ(x)} · F{|x|−1}

(6.3)

so
Φ(x) = F−1

{
F{ρ(x)} · F{|x|−1}

}
(6.4)

There is nothing special about the functions we convolve to find the potential, and this
method, to Fourier transform both functions, multiply the transforms together pointwise,
and then inverse transform, is the general technique for performing any convolution integral.

6.2 Mode expansion of the Poisson equation

By using spherical harmonics, we can break down the Poisson equation, which is linear, into
independent multipole components. By defining

ρm` (r) ≡
∫
ρ(r, θ, φ)Y m

`
∗(θ, φ)dΩ (6.5)

and noting that
∫
Y m′

`′ Y
m
`
∗dΩ = δll′δmm′ we may split the source term into a set of orthogonal

moments, such that

ρ =
∑
l,m

ρm` (r)Y m
` (θ, φ) (6.6)

Each term ρm` generates a term in the solution Φm
` , whose properties we will investigate after

a digression into spherical harmonics.

6.3 Spherical Harmonics

Spherical harmonics are generally introduced as the eigenmodes of the angular Laplacian
operator ∇2

A, but we can learn a great deal about them by looking at a particular expansion:
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the solutions to the Laplacian equation that are regular at the origin. Noting that ∇2
AY

m
` =

−`(`+1)Y m
` , we can find solutions rsY m

` that satisfy the Laplacian equation with no source:

1

r2

[
∂

∂r

(
r2
∂

∂r

)
+∇2

A

]
rsY m

` = 0 (6.7)

so
s(s+ 1)rs−2Y m

` = `(`+ 1)rs−2Y m
` (6.8)

The two radial solutions for a given value of ` are r` and r−(`+1), and we will look at the
former, in particular combinations: r`(Y m

` ± Y −m` ), where we consider the real component,
and r`(iY m

` ± iY −m` ), the imaginary component. We will ignore the scaling factors used to
normalize spherical harmonics. We find the following expressions:

Y 0
0 = 1 (6.9a)

rY 0
1 = z (6.9b)

Re(rY 1
1 ) = x (6.9c)

Im(rY 1
1 ) = y (6.9d)

r2Y 0
2 = 2z2 − x2 − y2 (6.9e)

Re(r2Y 1
2 ) = xz (6.9f)

Im(r2Y 1
2 ) = yz (6.9g)

Re(r2Y 2
2 ) = x2 − y2 (6.9h)

Im(r2Y 2
2 ) = xy (6.9i)

For ` = 0 and ` = 1, we generate all of the polynomials of order ` that exist. For the case
` = 2, there are six second-order polynomials–x2, y2, z2, xy, xz, yz, but only five spherical
harmonics. The cross-terms appear in the spherical harmonic list, so we are obviously short
one combination of the terms {x2, y2, z2}. To figure out the term that is missing, express
the two spherical harmonic terms as vectors, Y 0

2 = (−1,−1, 2), and ReY 2
2 = (1,−1, 0). The

missing component is the cross product of these two, which works out to be (2, 2, 2). In
other words, the vector proportional to x2 + y2 + z2. There is no l = 2 spherical harmonic
representation of this quantity, since it is a radial factor multiplied by Y 0

0 .

6.4 Multipole moments

If we have a compact density, i.e., one which is non-zero over a finite domain, , we can
perform a multipole expansion of the solution. This involves breaking the source term into
spherical harmonic modes, and solving each in turn. We have to remember that since the
potential goes to a constant as r →∞, our vacuum solution involves the terms in the form
r−(`+1)Y m

` . The general solution may be written

Φ = G

[
M

r
+
∑
i

pix̂
i

r2
+

1

2

∑
i,j

Qijx̂
ix̂j

r3
+ ...

]
(6.10)
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where x̂i is the unit normal vector at a given point located at radius r. The monopole moment
of the density distribution is given by the mass, M =

∫
ρdV , the dipole term collects the

Y m
1 terms:

pi ≡
∫
ρxidV (6.11)

and the Qij terms are the traceless quadrupole moments:

Qij ≡
∫
ρ(xixj − 1

3
δijr2)dV (6.12)

Why traceless? Based on previous discussion, the ` = 2 spherical harmonics don’t contain a
term that represents a pure radial component r2, and thus such modes don’t affect the grav-
itational potential outside of the matter distribution. This is commonly known as Newton’s
iron sphere theorem: a hollow sphere from the outside has the same gravitational potential
as a solid one of the same mass. There are, of course, higher order moments as well, but the
forms of each term get significantly more complicated as we progress.
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