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1 Probability

Statistical analysis and statistical inference is based on probabilistic statements, such as

1. “A card drawn from this deck has a 25% chance of being a spade”

2. “If the true luminosity of this star is L, there is a 67% chance that I will measure a
luminosity between L−∆L and L+ ∆L”

3. “If I measure the position of this electron, there is a 12.5% chance I will find it in this
octant”

4. “There is a 40% chance it will rain tomorrow”

5. “The Hubble constant is 90% likely to lie between 70 and 76 km/sec/Mpc”

There are subtle philosophical distinctions among the different kinds of probability, whether
they describe true quantum mechanical uncertainty, ignorance of the inner workings of a
physical system, outcomes of hypothetical experiments, or best estimates about unknown
parameters. They all obey the same quantitative rules, however, and I prefer to take the
approach used to deal with temperature in elementary thermodynamics: we know more or
less what we mean by probability, and we won’t examine the definition too closely unless we
need to. I encourage you to read Chapter Two of Gregory for a more careful consideration
of probability as a quantitative measure of plausibility.

1.1 Probability of Logical Propositions

The most basic thing we can assign a probability to is a logical proposition. For instance,
the probability that a fair die lands on three is 1/6. The probability that an atom decays
within its half-life is 50%. We typically use capital letters to label propositions, so we talk
about things like p(A).

Logical propositions can be combined; using the notation of Gregory, the basic operations
are

• Negation. A is true if A is false, and vice-versa. In words, we can think of A as “not A”.

• Intersection. A,B is true if A and B are both true. In words, this is “A and B”.

• Union A + B is true if either A or B (or both) is true. In words, this is “A or B”.
Note the unfortunate aspect of Gregory’s notation that + is to be read as “or” rather
than “and”.
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Another important quantity is the conditional probability p(A|B), the probability that
A is true if B is true, often referred to as the probability of A given B.

The basic rules of probability, which sort of follow from common sense, are

• p(A) + p(A) = 1; A and A are exhaustive, mutually exclusive alternatives, i.e., either
A or A is true, but not both, so the probability is 100% that either one or the other is
true.

• p(A,B) = p(A|B) p(B) = p(B) p(B|A); again, this is sort of self-apparent. If B is true,
for which the odds are p(B), then the odds of A also being true are p(A|B). Note
that if these are independent propositions, i.e., p(A|B) = p(A|B) = p(A), this means
p(A,B) = p(A)p(B).

• p(A+B) = p(A) + p(B)− p(A,B)

Identities like this are easier to see with so-called truth tables, where you make a list of all
of the possible combinations of truth and falsehood for different propositions:

A B A,B A,B A,B A,B A+B
T T T F F F T
T F F T F F T
F T F F T F T
F F F F F T F

You can see that

p(A) = p(A,B) + p(A,B) (1.1a)

p(B) = p(A,B) + p(A,B) (1.1b)

p(A+B) = p(A,B) + p(A,B) + p(A,B) , (1.1c)

from which p(A+B) = p(A) + p(B)− p(A,B) follows by simple algebra.
An important rule of probability is that if {Ak} form a mutually exclusive exhaustive set

of alternatives, ∑
k

p(Ak) = 1 (1.2)

We can also examine the truth table, and see that

p(A|B) =
p(A,B)

p(A,B) + p(A,B)
=
p(A,B)

p(B)
(1.3)

This is another very important property, in the form

p(A,B) = p(A|B)p(B) . (1.4)

Of course, it also works the other way, so

p(B|A)p(A) = p(A,B) = p(A|B)p(B) (1.5)

If we divide through by A we find

P (B|A) =
p(A|B)p(B)

p(A)
(1.6)

this seemingly trivial result is known as Bayes’s Theorem, and has remarkably deep conse-
quences.
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1.2 Bayesian and Frequentist Applications of Probability

So far, we’ve been sort of casual about just what these probabilities mean. Now it’s time to
think more carefully about what we use them for.

In the classical or frequentist approach to statistics, probability is to be thought of as
the relative frequency of observable events. If I perform an experiment which, under certain
conditions B, has a probability p(A|B) of having outcome A, then if I do the experiment
a large number N of times, and the conditions really are B, roughly Np(A|B) of those
experiments will give the result A and N [1 − p(A|B)] of them will give the result A. We
refer to p(A|B) as the likelihood function.

In the Bayesian approach, probabilities can also represent our degree of confidence that
a certain set of conditions B exist. Typically, one considers an experiment into which one
enters with prior expectation p(B) about those conditions. One then does the experiment
and gets the result A, and as a result, the probability one assigns to condition B becomes
the posterior probability p(B|A). If we have modelled the experiment and know p(A|B) and
p(A|B), we can use Bayes’s theorem to find the posterior:

p(B|A) =
p(A|B)p(B)

p(A)
=

p(A|B)p(B)

p(A|B)p(B) + p(A|B)p(B)
(1.7)

1.2.1 Example: Disease Testing

To give a concrete, simple example of this, consider a disease that a fraction α of the
population is known to have. There is a test for the disease that has a false positive rate of
β and a false negative rate of γ. (One might be told that the test is “99% accurate”, which
means either the false positive or false negative rate is 1%.) This means the likelihood is

p(+|S) = 1− γ p(−|S) = γ

p(+|S) = β p(−|S) = 1− β

where + indicates a positive test result, − a negative test result, S (for sick) a patient with
the disease and S a patient without the disease.

Suppose that I take the test and get a positive result. I might understandably want to
know the odds that I actually have the disease, and I might näıvely think they are 99% if
the test is 99% accurate. But that 99% is a frequentist statement, and it is not a statement
about the probability that a given person has the disease. From a frequentist point of view,
someone either has the disease or they don’t; the probabilistic thing is the outcome of the
test. So the 99% (or in general 1 − β) is not the odds that someone who tests positive has
the disease; it is the odds that someone without disease will test negative. I.e., it’s p(−|S),
not p(S|+).

To find p(S|+), we need to use Bayes’s Theorem, and we need to assign a prior probability
p(S). Assuming that I don’t have any special risk factors, my odds of having the disease
are the same as the fraction of the population which has it, i.e, p(S) = α and p(S) = 1− α.
Then I can say

p(S|+) =
p(+|S)p(S)

p(+)
=

p(+|S)p(S)

p(+|S)p(S) + p(+|S)p(S)
=

(1− γ)α

(1− γ)α + β(1− γ)
(1.8)
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So if α = 0.001 and β = γ = 0.01,

p(S|+) =
0.99 ∗ 0.001

0.99 ∗ 0.001 + 0.999 ∗ 0.01
=

0.00099

0.00999 + 0.00099
(1.9)

or about 9%. Another way to see it is that

p(S|+) =
p(S,+)

p(S,+) + p(S,+)
(1.10)

while

p(+|S) =
p(S,+)

p(S,+) + p(S,−)
(1.11)

1.3 Probability Distributions of Discrete Variables

One important application of the idea of probabilities for different propositions is to the case
of a random variable which can take one of a discrete set of values, like the number rolled
on a die. Then the alternatives corresponding to different values are obviously mutually
exclusive, and if you sum the probability over all possible values, you have to get unity:∑

I

p(I) = 1 (1.12)

Note that the probabilities of different possible values need not be equal. For example, if I
and J are the results of individual die rolls, so that

p(I) =
1

6
for I = 1, 2, . . . , 6 (1.13a)

p(J) =
1

6
for J = 1, 2, . . . , 6 (1.13b)

and the die rolls are independent so that p(I, J) = p(I)p(J), then their sum K = I + J will
be distributed according to

p(K) =
∑
I

∑
J

δK,I+Jp(I)p(J) =
6− |K − 7|

36
for K = 2, 3, . . . , 12 . (1.14)

1.4 Probability Distributions of Continuous Variables

When talking about the probability for a continuous random variable to take on a certain
value, things get a little more subtle, because one specific value is a set of measure zero. If we
want to talk about sensible alternatives, we should think about alternatives that represent
the variable falling into different ranges. For example, we can talk about the probability for
x to lie between x0 and x0 + dx:

p(x0 ≤ x < x0 + dx) (1.15)
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In the limit dx → 0, we expect this to be infinitesimal, so we can define the probability
density function (pdf)

f(x0) = lim
dx→0

p(x0 ≤ x < x0 + dx)

dx
. (1.16)

There are many notations for the pdf, including p(x), p(x), and even pdf(x). Sometimes it
will be useful to stress its nature as a density by writing

dP

dx
(x0) = f(x0) ; (1.17)

note that by dP
dx

we don’t actually mean a derivative of some function P (x), although of
course we could define a function such that f(x) is its derivative. In face, that function is
kind of useful, since it’s the probability that x is at or below a certain value:

p(x ≤ x0) =

∫ x0

−∞
f(x) dx =: f(x) (1.18)

This function f(x) is called the cumulative density function or cdf.
The normalization (1.12) becomes, in the case of a continuous random variable,

p(−∞ < x <∞) = F (∞) =

∫ ∞
−∞

f(x) dx = 1 . (1.19)

The pdf finally gives us a chance to write down a precise formula for the expectation
value considered previously. This is the average value of some function of x so it’s

〈A(x)〉 =

∫ ∞
−∞

A(x) f(x) dx (1.20)

Note that we can also consider a change of variables, where we ask the about the pdf of
some y which is a function of x. (If it’s a good coördinate change, y(x) will be a monotonic
function in the interval we’re interested in.) This is then

f(y0) = f(y(x0)) = lim
dy→0

p(y0 ≤ y(x) < y0 + dy)

dy
(1.21)

Now, for infinitesimal dx, we can write

y(x0 + dx) = y(x0) + y′(x0) dx = y0 + y′(x0) dx (1.22)

so if x is between x and x0, y is between y0 and y′(x0) dx. To get the relationship between
f(y0) and f(x0), we need to consider two different cases: y′(x0) > 0 and y′(x0) < 0.

If y′(x0) > 0: Then y0 + y′(x0) dx > y0 dx and

f(x0) dx = p(x0 < x < x0 + dx) = p(y0 < y < y0 + y′(x0) dx) = f(y0) y
′(x0) dx

= f(y0) |y′(x0)| dx
(1.23)

and

f(y(x0)) =
f(x0)

|y′(x0)|
(1.24)
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If y′(x0) < 0: Then y0 + y′(x0) dx = y0 + |y′(x0)| dx < y0 and

f(x0) dx = p(x0 < x < x0 + dx) = p(y0 − |y′(x0)| dx < y < y0)

= f(y0 − |y′(x0)| dx) y′(x0) dx = f(y0) |y′(x0)| dx
(1.25)

and once again

f(y(x0)) =
f(x0)

|y′(x0)|
(1.26)

This is of course just the chain rule of calculus applied to a change of variables, and is
easy to remember if we write it in the notation

f(y) =
dp

dy
=
dp

dx

∣∣∣∣dxdy
∣∣∣∣ =

f(x)

y′(x)
. (1.27)

1.4.1 Example: Inclination

As an example of the importance of a change of variables, consider the inclination ι between
an arbitrary direction (say the normal to the orbital plane of a binary star system) and our
line of sight. This is uniformly distributed in χ = cos ι, from χ = −1 to χ = 1, so

f(χ) =
dp

dχ
=

1

2
− 1 ≤ χ ≤ 1 (1.28)

If we change variables to ι, we have to use

dχ

dι
=

d

dι
cos ι = − sin ι (1.29)

to find

f(ι) =
dp

dι
=
dp

dχ

∣∣∣∣dχdι
∣∣∣∣ =

1

2
sin ι 0 ≤ ι ≤ π (1.30)

which is not uniform in ι.
Of course, this can also be extended to a probability density in the inclination and an

azimuthal angle ψ, and leads to a direction uniformly distributed over the sphere:

d2p

d2Ω
=

d2p

sin ι dι dψ
=

d2p

dχ dψ
=

1

4π
(1.31)

Tuesday, October 27, 2009

2 Statistical Inference

2.1 Example: Bayesian and Frequentist Upper Limits

The difference between the Bayesian and frequentist approaches is illustrated by the state-
ment

“Our experiment set an upper limit of xUL on the value of x at the 90% confidence level.”
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That turns out to mean rather different things when made in a Bayesian and a frequentist
context.

For simplicity, assume that the output of the experiment is a single measurement, which
results in a number y. Our understanding of the underlying theory and the experimental
setup tells us the likelihood function p(y|x). Note that this is a density in y but not x. It
tells us that the probability that y will lie in a range of values given a specific value of x is

p(y1 < y < y2|x) =

∫ y2

y1

p(y|x) dy . (2.1)

Now suppose we run the experiment and get the actual number ŷ. How would a Bayesian
and a frequentist calculate a 90% upper limit on x?

2.1.1 Bayesian Upper Limit

The Bayesian 90% upper limit statement means what you’d think it means: given the result
ŷ, you are 90% confident that the true value x is below xBayes

UL . We can write this in terms of
the posterior probability distribution p(x|y)

p(x < xBayes
UL |ŷ) =

∫ xBayes
UL

−∞
p(x|ŷ) dx = 90% (2.2)

Plotting the posterior pdf, xUL is defined such that 90% of the area under the posterior
p(x|ŷ) lies in the region x < xUL:

This is probably what you think of when you hear a 90% upper limit statement:
“Given that the result of the measurement was ŷ, we estimate a 90% probability that

the true value of x is xUL or lower.”
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Of course, it uses the posterior probability p(x|y) rather than the likelihood p(y|x), so
we have to use Bayes’s theorem to evalate it:

p(x|y) =
p(y|x) p(x)

p(y)
=

p(y|x) p(x)∫∞
−∞ p(y|x′) p(x′) dx′

, (2.3)

and that in turn means we need to know the prior p(x).

2.1.2 Frequentist Upper Limit

In the frequentist approach, we can’t estimate the probability that x < xUL, because we
don’t talk about probabilities for physical quantities to have particular values. (After all x
has some fixed value, even if we don’t know it.) The probabilities we can discuss are those
of the outcome of an experiment including some random measurement error. The definition
of the frequentist 90% upper limit is actually

p(y > ŷ|xfreqUL ) =

∫ ∞
ŷ

p(y|xfreqUL ) dy = 90% (2.4)

or more accurately

p(y > ŷ|x) =

∫ ∞
ŷ

p(y|x) dy > 90% if x > xfreqUL . (2.5)

That means that the upper limit xfreqUL is defined such that, if the actual value of x is right
at xfreqUL , 90% of the area under the likelihood function p(y|xfreqUL ) lies in the region y > ŷ, i.e.,
we would have expected a y value higher than the one we saw 90% of the time:

The idea is that, while we can’t assign probabilities to different values of x, we can think
about how unlikely it would be to make a y measurement as low as ŷ if the true value of x
were large. For each possible value of x, we can find the range of y values which we’d expect
to find 90% of the time; those are shaded on this plot:
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At any x, the y values that fall in the unshaded region would be expected only 10% of the
time. The range of x values (x > xfreqUL ) excluded at the 90% confidence level is those for
which the actual measured ŷ falls in the 10th percentile or lower among expected y values.
The statement in words is:

“If the true value of x were above the upper limit xfreqUL , we would expect to get our actual
result ŷ or lower in less than 10% of the experiments.”

It’s almost never stated that way, but that’s what “90% frequentist upper limit” means.

2.2 Consequences of Choice of Priors in Bayesian Analysis

Let’s return to the Bayesian interpretation of our experiment, and consider how the choice
of prior p(x) impacts the construction of the posterior

p(x|y) =
p(y|x) p(x)

p(y)
=

p(y|x) p(x)∫∞
−∞ p(y|x′) p(x′) dx′

. (2.6)

(Recall that x is the underlying physical parameter and y is the quantity returned by the
experiment.) Notice that since we typically focus on the x dependence, we can write

p(x|ŷ) =
p(ŷ|x) p(x)

p(ŷ)
∝ p(y|x) p(x) (2.7)

where the normalization 1/p(ŷ) is independent of x and can be set by requiring∫ ∞
−∞

p(x|ŷ) dx = 1 (2.8)

so schematically,

(posterior) = (likelihood)× (prior)× (normalization) (2.9)
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But the big question is what we use for p(x). It is supposed to reflect our prior knowledge,
but sometimes it can be dangerous to take that too literally. For example, suppose our prior
expectations have already pretty tightly constrained x compared to the sensitivity of the
experiment. Then we can get a scenario like this

where the posterior looks a lot like the prior. We’d conclude that our state of knowledge
after the experiment is basically what it was before, and was bound to be so regardless
of the outcome of the experiment. That might be true, but it’s not the most informative
description of the experimental results. It’s also the sort of thing which critics of Bayesian
statistics often suspect: letting our prior expectations be part of the analysis can make the
results conform to those expectations.

So sometimes you may choose to be as ignorant as possible about the prior. One seemingly
obvious way to assume we know nothing is to let any value of x be equally likely, and choose
the prior

p(x) = constant . (2.10)

There’s a formal problem, in that we should normalize p(x) so that∫ ∞
−∞

p(x) dx = 1 (2.11)

and you can’t do that if x is literally a constant for all x. There’s an easy workaround,
though. You can take

p(x) =

{
1
X
|x| < X

2

0 |x| > X
2

, (2.12)

which is constant over some range of values of width X and then just choose X much larger
than any other relevant scale in the problem. If the likelihood is well-behaved, the posterior
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will remain well-defined in the limit X →∞. In this case1

p(x|ŷ) =
p(ŷ|x) p(x)∫∞

−∞ p(ŷ|x′) p(x′) dx′
=
p(ŷ|x) Θ(X − 2 |x|)X−1∫ X/2
−X/2 p(ŷ|x′)X−1 dx′

X→∞−→ p(ŷ|x)∫∞
−∞ p(ŷ|x′) dx′

(2.13)

so the posterior is just a constant normalization factor times the likelihood, and the Bayesian
approach starts to look a lot like the Frequentist one.

There is another problem with the approach of choosing a uniform prior: the prior p(x)
and the posterior p(x|y) are both densities the physical quantity x. That means if we make
a coördinate change, the prior will not remain constant. For concreteness, suppose x is a
quantity which is physically constrained to be positive, so that the uniform prior is actually

p(x) =

{
1
X

0 < x < X

0 x > X
, (2.14)

which would lead to a posterior

p(x|ŷ) =
p(ŷ|x)∫∞

0
p(ŷ|x′) dx′

∝ p(ŷ|x) . (2.15)

We could also define ξ = lnx, which is allowed to range from −∞ to ∞ as x ranges from 0
to ∞. Well, since p(x) is a density in x, p(ξ) is not just p(x = eξ). Rather,

p(ξ) =
dP

dξ
=
dx

dξ

dP

dx
= eξp(x = eξ) (2.16)

So
If p(x) = constant then p(ξ) ∝ eξ (2.17)

and conversely

If p(ξ) = constant then p(x) ∝ 1

x
. (2.18)

On the other hand, the likelihood p(y|x) is not a density in x, so it is unchanged by a chance
of coördinates:

p(y|ξ) = p(y|x = eξ) . (2.19)

So the main moral is that what it means to use a uniform prior depends on how you
parametrize the relevant physical quantities.

Thursday, October 29, 2009

2.3 Joint Probability Distributions

Just as we can consider the joint probability for multiple propositions to be true, p(A,B),
we can also consider the joint pdf for multiple variables. For two variables, the pdf p(x, y)
is defined as

p(x0, y0) = lim
dx,dy→∞

p(x0 < x < x0 + dx, y0 < y < y0 + dy)

dx dy
. (2.20)

1We use the Heavyside step function Θ(ξ), which is 1 when ξ > 0 and 0 when ξ < 0
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By the standard probability sum rule for disjoint alternatives, the probability that (x, y) lies
in some region R is

p((x, y) ∈ R) =
x

R

p(x, y) dx dy (2.21)

and the normalization of the joint pdf is∫ ∞
−∞

∫ ∞
−∞

p(x, y) dx dy = 1 (2.22)

Since p(x, y) is a density in x and y, it is sometimes useful to write it as d2p
dx dy

, to help us

remember that if we change variables to u = u(x, y) and v = v(x, y), the pdf transforms like

p(u, v) =
d2p

du dv
=

∥∥∥∥∂(u, v)

∂(x, y)

∥∥∥∥−1 d2p

dy dy
=

∥∥∥∥∂(u, v)

∂(x, y)

∥∥∥∥−1 p(x, y) (2.23)

where we have used the usual Jacobian determinant∥∥∥∥∂(u, v)

∂(x, y)

∥∥∥∥ =

∣∣∣∣det

(∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)∣∣∣∣ (2.24)

from advanced calculus. This is needed to ensure that

p((u, v) ∈ R) =
x

R

p(u, v) du dv (2.25)

since the area element transforms like

du dv =

∥∥∥∥∂(u, v)

∂(x, y)

∥∥∥∥ dx dy (2.26)

The generalization to a joint pdf of many variables p({xα}) is straightforward.
Note that the joint pdf can be written in terms of the conditional pdf; the product rule

from probability translates into

p(x, y) = p(x|y) p(y) . (2.27)

The factors of dx and dy work out because p(x|y) is a density in x (but not y), p(y) is a
density in y, and p(x, y) is a density in both.

If x and y are independent, this simplifies, because

p(x|y) = p(x) if x and y are independent (2.28)

so that
p(x, y) = p(x) p(y) if x and y are independent . (2.29)

In general, though, we can find the pdf of one variable by integrating out (another word
for this is marginalizing) over the other one:

p(x) =

∫ ∞
−∞

p(x, y) dy . (2.30)
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This can be seen by applying (2.21) to the region

x0 < x < x0 + dx (2.31a)

−∞ < y <∞ . (2.31b)

Another special case is when y is completely determined by x, i.e., y = y(x). This
deterministic situation is represented by the conditional pdf

p(y|x) = δ(y − y(x)) if y is determined by x ; (2.32)

in that case
p(x, y) = δ(y − y(x)) p(x) if y is determined by x . (2.33)

In general, though, the relationship represented by p(x, y) is more complicated.

2.3.1 Nuisance Parameters

The outcome of a measurement may depend both on physical parameters of interest and also
on other parameters we don’t care about, known as nuisance parameters. We generally want
to marginalize the relevant joint probability distributions over the nuisance parameters.

As a concrete example, return to our toy experiment which returns a single number y,
but let that number depend now on the physical quantity of interest x but also on a nuisance
parameter λ, so that our experiment is modelled by the likelihood function p(y|x, λ).

From a Bayesian perspective, we can still apply Bayes’s theorem, but now it gives us a
joint posterior pdf on x and the nuisance parameter λ:

p(x, λ|y) =
p(y|x, λ) p(x, λ)

p(y)
(2.34)

where now we need to know the joint prior p(x, λ). The normalization is given by

p(y) =

∫ ∞
−∞

∫ ∞
−∞

p(y|x, λ) p(x, λ) dx dλ . (2.35)

To marginalize, we just calculate

p(x|y) =

∫ ∞
−∞

p(x, λ|y) dλ (2.36)

We can also marginalize at the level of the likelihood, in terms of the conditional proba-
bility

p(λ|x) =
p(x, λ)

p(x)
(2.37)

we can do this by calculating

p(y|x) =

∫ ∞
−∞

p(y|x, λ) p(λ|x) dλ (2.38)

This is particularly convenient if x and λ are independent (e.g., if λ represents an unknown
property of the instrument which is uncorrelated with the physical observable of interest) so
that p(λ|x) = p(λ).

14



2.3.2 Example: Calibration Uncertainty

Suppose y is an estimator of x, with an associated statistical error of σ (assumed to be
known), but that the overall calibration is uncertain, so that we’re actually estimating the
product of x and an unknown λ:

p(y|x, λ) =
e−(y−λx)

2/2σ2

σ
√

2π
; (2.39)

Suppose that λ is known to be close to 1, but with an uncertainty σλ, so that

p(λ|x) = p(λ) =
e−(λ−1)

2/2σ2
λ

σλ
√

2π
. (2.40)

With these pdfs, we can actually do the marginalization analytically:

p(y|x) =
1

2πσσλ

∫ ∞
−∞

exp

(
−(y − λx)2

2σ2
− (λ− 1)2

2σ2
λ

)
dλ . (2.41)

Since the argument of the exponential is

−(y − λx)2

2σ2
− (λ− 1)2

2σ2
λ

= −(σ2 + x2σ2
λ)λ

2 − 2(σ2 + xyσ2
λ)λ+ (σ2 + y2σ2

λ)

2σ2σ2
λ

= −σ
2 + x2σ2

λ

2σ2σ2
λ

(
λ− σ2 + xyσ2

λ

σ2 + x2σ2
λ

)2

+
(σ2 + xyσ2

λ)
2

2σ2σ2
λ(σ

2 + x2σ2
λ)
− σ2 + y2σ2

λ

2σ2σ2
λ

= −σ
2 + x2σ2

λ

2σ2σ2
λ

λ′
2

+
(σ2 + xyσ2

λ)
2 − (σ2 + x2σ2

λ)(σ
2 + y2σ2

λ)

2σ2σ2
λ(σ

2 + x2σ2
λ)

= −σ
2 + x2σ2

λ

2σ2σ2
λ

λ′
2 − (x2 + y2 − 2xy)σ2σ2

λ

2σ2σ2
λ(σ

2 + x2σ2
λ)

= −σ
2 + x2σ2

λ

2σ2σ2
λ

λ′
2 − (y − x)2

2(σ2 + x2σ2
λ)

(2.42)

we can evaluate the integral and get

p(y|x) =
e−(y−x)

2/2(σ2+x2σ2
λ)√

2π(σ2 + x2σ2
λ)

(2.43)

This is still a Gaussian, but now instead of σ, its width is
√
σ2 + x2σ2

λ. We can think of σ
as the statistical error and xσλ as the systematic error associated with the calibration.

Tuesday, November 3, 2009

3 “Maximum Posterior” Parameter Estimation

3.1 Single-Parameter Case

Suppose we’ve done an experiment and, based on the data D collected (we’ve been calling
this ŷ, but we’d like to generalize beyond the case of a single number), the posterior pdf
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for some parameter x is p(x|D). How do we distill that result to an estimate of x and our
uncertainty of x? Well, we could use the expectation value to talk about a mean value

〈x〉D =

∫ ∞
−∞

x p(x|D) dx (3.1)

and a variance 〈
(x− 〈x〉D)2

〉
D

(3.2)

but that’s sometimes harder to calculate than it is to state in the abstract. In particular,
when we generalize to the case of many parameters, we can quickly end up with multi-
dimensional integrals that are computationally expensive to evaluate.

Another thing we could consider is which value of x is most likely given the results of the
experiment, i.e., the x which maximizes the posterior pdf. We can call this x̂, defined by

∀x : p(x̂|D) ≥ p(x|D) . (3.3)

This is often called the “maximum likelihood estimate”, although in this case we’re actually
maximizing the posterior rather than the likelihood. (There’s an equivalent frequentist
approach which works with the likelihood, and is equivalent to assuming a uniform prior in
x.) To define an uncertainty ∆x associated with this, we could do something like requiring
that x be so likely to fall in the interval x̂ −∆x < x < x̂ + ∆x according to the posterior.
But again, this would require integrating over the posterior, which we can’t always do. But
note that this would be an integral near the maximum of the posterior, which is motivation
for an approximation: expand the posterior about its maximum.

Now, it’s actually not such a good idea to expand p(x|D) itself about x = x̂ because we
know p(x|D) can’t ever be negative, and in fact we expect it to be close to zero if we go far
away from the maximum. Instead, what we want to do is expand its logarithm,

L(x) = ln p(x|D) . (3.4)

taking advantage of the fact that as p(x|D)→ 0, L(x)→ −∞. So we write the Taylor series
as

L(x) = L(x̂) + (x− x̂)L′(x̂) +
(x− x̂)2

2
L′′(x̂) + . . . (3.5)

Since x = x̂ is a maximum of p(x|D) and therefore of L(x), we know that L′(x̂) = 0 and
L′′(x̂) < 0, so to lowest non-trivial order

L(x) ≈ L(x̂)− (x− x̂)2

2
[−L′′(x̂)] (3.6)

and

p(x|D) ≈ p(x̂|D) exp

(
−(x− x̂)2

2[
√
−1/L′′(x̂)]2

)
, (3.7)

so the posterior is approximated near its maximum by a Gaussian of width
√
−1/L′′(x̂). If

it were actually equal to a Gaussian, the expectation value of x would be x̂ and the expected
variance of x would be −1/L′′(x̂). So

√
−1/L′′(x̂) is an estimate in the “one-sigma error”

associated with the estimate x̂.
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3.2 Multiple-Parameter Case

Now consider the case where the model has multiple parameters {xα}; writing the vector of
parameters as x, the expansion of the log-posterior about its maximum at x = x̂ is

ln p(x|D) = L(x) ≈ L(x̂)− 1

2

∑
α

∑
β

(
− ∂2L

∂xα∂xβ

)
x=x̂

(xα − x̂α)(xβ − x̂β) . (3.8)

If we define a matrix F with elements

Fαβ = − ∂2L

∂xα∂xβ
(3.9)

we can write this approximation to the posterior as

p(x|D) ≈ p(x̂|D) exp

(
−1

2
(x− x̂)T F (x− x̂)

)
(3.10)

The matrix F is called the Fisher information matrix, and its inverse provides a measure of
the variance and covariance of the {xα}:〈

(x− x̂) (x− x̂)T
〉
≈ F−1 (3.11)

(this would be exact if the posterior really were Gaussian).
Near the maximum, curves of constant posterior will be ellipsoids in the {xα} space. You

can see that by noting that since the Fisher matrix F is a real, symmetric matrix, it has a
full set of real eigenvalues {fα} with orthonormal eigenvectors {uα}, and we can write it as

F =
∑
α

uα fαu
T
α (3.12)

and so

p(x|D) ≈ p(x̂|D) exp

(
−
∑
α

fα
2

(ξα)2

)
(3.13)

where
ξα = uT

α(x− x̂) (3.14)

the equation ∑
α

fα
2

(ξα)2 = constant (3.15)

defines an ellipsoid in the {ξα} coördinates with axes proportional to 1/
√
fα, and the {ξα}

are just a different set of coördinates rotated relative to {xα − x̂α}. These error ellipses
mean that it’s important to use the diagonal elements of the inverse Fisher matrix for error
estimates rather than just taking one over the diagonal elements of the Fisher matrix itself.
I.e., the error estimate for xα is〈

(xα − x̂α)2
〉
≈ (F−1)αα 6=

1

Fαα
(3.16)
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3.3 Example: Scale Parameter

Return to the example we considered last week of the likelihood

p(y|x, λ) =
e−(y−λx)

2/2σ2

σ
√

2π
(3.17)

with a prior of

p(λ) =
e−(λ−1)

2/2σ2
λ

σλ
√

2π
(3.18)

on the scale parameter λ. If we assume a uniform prior on x, the joint posterior for x and λ
after a measurement ŷ will be

p(x, λ|ŷ) ∝ e−(y−λx)
2/2σ2

e−(λ−1)
2/2σ2

λ (3.19)

where we won’t bother working out the proportionality constant because it’s independent of
x and λ. The log-posterior

L(x, λ) = ln p(x, λ|ŷ) = −(ŷ − λx)2

2σ2
− (λ− 1)2

2σ2
λ

+ const (3.20)

is maximized by

x̂ = ŷ (3.21a)

λ̂ = 1 (3.21b)

; the second partial derivatives are

∂2L

∂x2
= −λ

2

σ2
(3.22a)

∂2L

∂x∂λ
= −2λx− ŷ

σ2
(3.22b)

∂2L

∂λ2
= −x

2

σ2
− 1

σ2
λ

(3.22c)

so the Fisher matrix is

F =

(
1
σ2

ŷ
σ2

ŷ
σ2

ŷ2

σ2 + 1
σ2
λ

)
= σ−2σ−2λ

(
σ2
λ ŷσ2

λ

ŷσ2
λ ŷ2σ2

λ + σ2

)
(3.23)

so the posterior is approximated near its maximum by

p(x, λ|ŷ) ≈ p(x = ŷ, λ = 1|ŷ) exp

[
− 1

2σ2σ2
λ

(
x− ŷ λ− 1

)T( σ2
λ ŷσ2

λ

ŷσ2
λ ŷ2σ2

λ + σ2

)(
x− ŷ λ− 1

)]
.

(3.24)
The inverse Fisher matrix is

F−1 =

(
σ2 + ŷ2σ2

λ −ŷσ2
λ

−ŷσ2
λ σ2

λ

)
. (3.25)
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Note that in particular
(F−1)xx = σ2 + ŷ2σ2

λ (3.26)

while
1

Fxx
= σ2 ; (3.27)

the difference is equivalent to the difference between marginalizing over the nuisance param-
eter λ and just assuming it takes on its most likely value.

Thursday, November 5, 2009

4 The Central Limit Theorem

4.1 Anecdotal Evidence

Having seen that a general pdf can be approximated by a Gaussian near its maximum, we
now examine a principle that often causes physical quantities to have Gaussian pdfs. This
is the Central Limit Theorem, which says that the average of many independent, identically
distributed variables has a distribution which is approximately Gaussian.

To see a simple example of how the distribution of a sum of random quantities approaches
a Gaussian, consider rolling a fair six-sided die. The results are uniformly distributed:

If we roll two dice and add the results, we get a non-uniform distribution, with results close
to 7 being most likely, and the probability distribution declining linearly from there:

19



If we add three dice, the distribution begins to take on the shape of a “bell curve” and in
fact such a random distribution is used to approximate the distribution of human physical
properties in some role-playing games:

Adding more and more dice produces histograms that look more and more like a Gaussian:
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4.2 Averages of Identical Variables

You considered on the homework the example of N identically distributed random variables
{xk} with expectation values

〈xk〉 = µ and 〈(xk − µ)(xn − µ)〉 = δkn σ
2 (4.1)

and found that the average

x =
1

N

N−1∑
k=0

xk (4.2)

had expected mean
〈x〉 = µ (4.3)

and variance 〈
(x− µ)2

〉
=
σ2

N
. (4.4)

This is easy to see if we define

zk =
xk − µ
σ

(4.5)

so that
〈zk〉 = 0 and 〈zkzn〉 = δkn . (4.6)

Then if we define

Z =
N−1∑
k=0

zk =
1

σ

N−1∑
k=0

(xk − µ) = N
x− µ
σ

(4.7)

we find 〈Z〉 = 0 and

〈
Z2
〉

=
N−1∑
k=0

N−1∑
n=0

〈zkzn〉 =
N−1∑
k=0

N−1∑
n=0

δkn = N = N2 〈(x− µ)2〉
σ2

. (4.8)
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If we want to think about adding a bunch of copies of something and taking the limit as
N →∞, we should choose our quantity so that the expected mean and variance remain well
behaved in that limit, so we define

Z =
Z√
N

=
1√
N

N−1∑
k=0

zk =
1√
Nσ

N−1∑
k=0

(xk − µ) (4.9)

which obeys
〈Z〉 = 0 and

〈
Z2
〉

= 1 . (4.10)

If we define X = X√
N

= 1√
N

∑N−1
k=0 xk we find

〈X 〉 = µ
√
N and

〈
(X − µ

√
N)2

〉
= σ2 . (4.11)

4.3 PDF of a Sum of Random Variables

If we consider two independent random variables x0 and x1 with (not necessarily identical)
pdfs p0(x0) and p1(x1), so that their joint pdf is

p(x0, x1) = p0(x0)p1(x1) (4.12)

and write their sum as
X = x0 + x1 (4.13)

we can ask what the pdf p(X) is. One way to approach this2 is to consider the joint pdf
p(X, x1). We can do this by changing variables from x0 to X = x0 + x1; since we’re actually
changing from (x0, x1) to (X, x1), we can treat x1 as a constant3 and since dX = dx0 in that
case,

p(X, x1) = p0(X − x1)p1(x1) . (4.14)

if we then marginalize over x1, we find

p(X) =

∫ ∞
−∞

p0(X − x1) p1(x1) dx1 (4.15)

and so we see that the pdf of a sum of variables is the convolution of their individual pdfs.
Of course, since convolutions map onto products under the Fourier transform, that means

the Fourier transform of the pdf of a sum of variables is the product of the Fourier transforms

2An alternative, slick shortcut is to write

p(X) =

∫ ∞
−∞

∫ ∞
−∞

δ(X − [x0 + x1]) p(x0, x1) dx0 dx1

3Alternatively, we can consider the Jacobian determinant

∥∥∥∥ ∂(X,x1)

∂(x0, x1)

∥∥∥∥ =

∣∣∣∣∣∣det


(

∂X
∂x0

)
x1

(
∂X
∂x1

)
x0(

∂x0

∂x0

)
x1

(
∂x0

∂x1

)
x0

∣∣∣∣∣∣ =

∣∣∣∣det

(
1 1
1 0

)∣∣∣∣ = 1

.
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of their individual pdfs. The Fourier transform of a pdf is a very handy thing, known as the
characteristic function for that random variable:

Φx(ξ) =

∫ ∞
−∞

e−i2πxξ p(x) dx (4.16)

4.3.1 Properties of the Characteristic Function

• Φx(ξ) =
〈
e−i2πxξ

〉
. This is often given as the definition of the characteristic function,

but it seems more natural to think of the Fourier transform of the pdf.

• Φx(0) = 1. This is apparent from the normalization:

Φx(0) =

∫ ∞
−∞

p(x) dx = 1 (4.17)

• If we Taylor expand the exponential, we get the moments of the distribution, i.e., the
expectation values of powers of x:

Φx(ξ) =

∫ ∞
−∞

∞∑
n=0

(−i2π)n

n!
xn ξn p(x) dx =

∞∑
n=0

(−i2π)n

n!
〈xn〉 ξn (4.18)

• If p(x) is a Gaussian,

p(x) =
1

σ
√

2π
e−(x−µ)

2/2σ2

(4.19)

then

Φx(ξ) = exp

(
−i2πµξ − (2πξ)2

2σ−2

)
(4.20)

which we get as usual by completing the square in the integral over x.

•
Φax(ξ) =

∫ ∞
−∞

e−i2πaxξ p(ax) d(ax) =

∫ ∞
−∞

e−i2πaxξ p(x) dx = Φx(aξ) (4.21)

4.4 Proof of the Central Limit Theorem

We are now ready to show that if the {xj} are independent identically distributed variables,
whatever the pdf, Z is Gaussian-distributed in the limit N → ∞. We do this by showing
that the characteristic function ΦZ(ξ) becomes the characteristic function for a Gaussian in
the limit of large N .

First, note that since Z =
∑N−1

k=0 zk,

ΦZ(ξ) = [Φz(ξ)]
N (4.22)

(since the pdf p(Z) can be made by convolving together N copies of p(z)). Now, since
Z = Z/

√
N ,

ΦZ(ξ) = ΦZ(ξ/
√
N) = [Φz(ξ/

√
N)]N . (4.23)
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For large N , we can Taylor expand

Φz(ξ/
√
N) = 1− i2πξ 〈zk〉√

N
− (2πξ)2 〈(zk)2〉

2N
+O(N−3/2) (4.24)

where O(N−3/2) represents terms which go to zero for large N at least as fast as N−3/2.
Since we’ve constructed the {zk} so that 〈zk〉 = 0 and 〈(zk)2〉 = 1, this becomes

Φz(ξ/
√
N) = 1− (2πξ)2

2N
+O(N−3/2) (4.25)

and so

ΦZ(ξ) =

(
1− (2πξ)2

2N
+O(N−3/2)

)N
=

(
1− (2πξ)2

2N

)N
+O(N−1/2) (4.26)

and

lim
N→∞

ΦZ(ξ) = lim
N→∞

(
1− (2πξ)2

2N

)N
= exp

(
−(2πξ)2

2

)
. (4.27)

But this is just the characteristic function for a Gaussian of zero mean and unit variance, so

p(Z)
N→∞−→ 1√

2π
e−Z

2/2 (4.28)

and since

Z =
X −Nµ
σ
√
N

(4.29)

that means that for large N ,

p(X) ≈ 1

σ
√

2πN
exp

(
−(X −Nµ)2

2Nσ2

)
(4.30)

Tuesday, November 10, 2009

5 Probabilities for Discrete Numbers of Events

5.1 Binomial Distribution

Consider a random event that has a probability of α of occurring in a given trial (e.g.,
detection of a simulated signal by an analysis pipeline, where α is the efficiency), so that

p(1|α, 1) = p(Y |α) = α (5.1a)

p(0|α, 1) = p(N |α) = 1− α (5.1b)

We write p(k|α, n) as the probability that if we do n trials, we will find a “yes” result in k of
them. For n trials, there are 2n possible sequences of yes and no results. The probability of
a particular sequence of k yes and n− k no results is αk(1− α)n−k, and the number of such
sequences for a given k and n is “n choose k”,

(
n
k

)
= n!

k!(n−k)! , so the probability of exactly k
“yes” results in n trials is

p(k|α, n) =

(
n

k

)
αk(1− α)n−k (5.2)

You are currently exploring the consequences of this distribution in problem set 8.
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5.2 Poisson Distribution

Now consider a process occurring over continuous time such that:

• The average rate of events per unit time is r;

• the number of events that occurs in a time interval t0 < t < t1 depends only on the
duration t1 − t0.

If we want to calculate the pdf p(k|r, T ) that exactly k events occur in time T , we can derive
this as the limit of the binomial distribution. (See Section 4.7 of Gregory for an alternative
derivation.)

Subdivide the interval into N small intervals of duration δt = T/N . The average number
of events in one of these intervals will be r δt. If we choose δt � r−1, so that the expected
number of events is very small, it will be very unlikely that we see any events at all, and
phenomenally unlikely that we see more than one event in a time δt. So to lowest order in
r δt we expect

p(0|r, δt) = 1− r δt+O([r δt]2) (5.3a)

p(1|r, δt) = r δt+O([r δt]2) (5.3b)
∞∑
k=2

p(k|r, δt) = O([r δt]2) (5.3c)

But in the limit δt → 0 this is just a single trial with a probability r δt of a “yes” result.
Since each infinitesimal interval of time is independent of each other, the probability of k
events in the N trials is then given by the binomial distribution

p(k|r, T ) = lim
δt→0

p(k|rδt, T/δt) = lim
N→∞

p(k|rT/N,N) = lim
N→∞

N !

(N − k)!k!

(
rT

N

)k (
1− rT

N

)N−k
=

(rT )k

k!
lim
N→∞

(
1− rT

N

)N
N !

(N − k)!
(N − rT )−k

(5.4)

Now,

N !

(N − k)!
= N(N − 1) . . . (N − k + 1) =

k−1∏
`=0

N − ` (5.5)

and of course

(N − rT )−k =
k−1∏
`=0

1

N − rT
(5.6)

so
N !

(N − k)!
(N − rT )−k =

k−1∏
`=0

N − `
N − rT

=
k−1∏
`=0

1− `/N
1− rT/N

(5.7)

but for finite k this is the product of a finite number of things, each of which goes to 1 as
N →∞, so

p(k|r, T ) =
(rT )k

k!
lim
N→∞

(
1− rT

N

)N
=

(rT )k

k!
e−rT . (5.8)
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This is the Poisson distribution. It’s easy to check that it’s normalized, i.e.,

∞∑
k=0

p(k|r, T ) = e−rT
∞∑
k=0

(rT )k

k!
= e−rT erT = 1 . (5.9)

Note that as a consistency check we can go back and verify our assumptions (5.3):

p(0|r, δt) = e−rδt = 1− r δt+O([r δt]2) (5.10a)

p(1|r, δt) = r δt e−rδt = r δt+O([r δt]2) (5.10b)
∞∑
k=2

p(k|r, δt) = 1− p(0|r, δt)− p(1|r, δt) = O([r δt]2) (5.10c)

5.2.1 Application: Estimating Event Rates

Suppose we have observed a Poisson process, with an unknown event rate r, for a time T ,
and seen k̂ events. We can use Bayes’s theorem to construct a posterior pdf on the rate r:

p(r|k, T ) =
p(k|r, T ) p(r)

p(k|T )
(5.11)

Uniform Prior If we use a uniform prior, p(r) = constant, on the rate, we get a posterior

p(r|k̂, T, uniform prior) =
T (rT )k̂ e−rT

k̂!
. (5.12)

Exercise: check that p(r|k̂, T, uniform prior) is normalized, and that it has a maximum at
k̂/T .

Jeffreys Prior On the other hand, a uniform prior doesn’t make all that much sense for
an event rate. It means that a priori, we think it’s equally likely for the rate to be between
1 and 2 per hour as it is to be between 3600 and 3601 per hour, i.e., between 1 and 1.00028
per second. If we really know nothing about the rate, it might be more reasonable to say we
expect it to be equally likely to be between 1 and 2 per hour as it is to be between 1 and 2
per second. This is a Jeffreys prior, uniform in ln r rather than in r, i.e.,

dp

d ln r
= r

dp

dr
= r p(r) = constant (5.13)

so that

p(r) ∝ 1

r
. (5.14)

Starting from this prior, we get the normalized posterior

p(r|k̂, T, Jeffreys prior) =
T (rT )k̂−1 e−rT

(k̂ − 1)!
. (5.15)

This seems like kind of a funny result: the posterior given k̂ events and a Jeffreys prior is
the same as the posterior given k̂ − 1 events and a uniform prior. In particular, it’s peaked
at (k̂ − 1)/T rather than k̂/T .
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Comparison of Posteriors We can see this by plotting the two posteriors for the specific
value k̂ = 10:

The posterior from the uniform prior is peaked at r = 10/T while that for the Jeffreys prior
is peaked at r = 9/T .

The explanation is that, in the perspective that led us to the Jeffreys prior, we should
not be looking at the pdf p(r|k̂, T ), which is a density in r. We chose a prior which was a
uniform density in ln r, and by the same logic we should be interested in the posterior per
logarithmic rate interval, p(ln r|k̂, T ) = r p(r|k̂, T ),4 and then plot r on a log scale:

4Note that the normalization on this is∫ ∞
−∞

p(ln r|k̂, T ) d ln r =

∫ ∞
0

p(ln r|k̂, T )
dr

r
= 1

.

28



when plotted this way, we see that the posterior corresponding to the Jeffreys prior,

p(ln r|k̂, T, Jeffreys prior) = r
T (rT )k̂−1 e−rT

(k̂ − 1)!
=

(rT )k̂ e−rT

(k̂ − 1)!
(5.16)

is indeed peaked at r = 10/T , while

p(ln r|k̂, T, uniform prior) = r
T (rT )k̂ e−rT

k̂!
=

(rT )k̂+1 e−rT

k̂!
(5.17)

is peaked at r = 11/T .
The moral of the story is to be careful about identifying the variable in which your pdfs

are densities!
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