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Tuesday 9 March 2010

0 Administrata

• Syllabus

• Instructor’s name (Whelan) rhymes with “wailin’”.

• Text: Devore, Probability and Statistics for Engineering and the Sciences. We’ll use
the 7th edition; the 6th edition apparently covers the same material, but the problems
will not necessarily be the same. 7th edition is on reserve at the Library.

∗Copyright 2010, John T. Whelan, and all that
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• Course website: http://ccrg.rit.edu/~whelan/1016-351/

• Course calendar: tentative timetable for course.

• Structure:

– Read relevant sections of textbook before class

– Lectures to reinforce and complement the textbook

– Practice problems (odd numbers; answers in back but more useful if you fo them
before looking!); will go over some in class

– Problem sets to hand in: practice at writing up your own work neatly & coherently.
Note: doing the problems is very important step in mastering the material.

– Quizzes: closed book, closed notes, use scientific calculator (not your phone!)

– Prelim exam (think midterm, but there are two of them) in class at end of each half
of course: closed book, one handwritten formula sheet, use scientific calculator
(not your phone!)

– Final exam to cover both halves of course

• Grading:

5% Problem Sets

10% Quizzes

25% First Prelim Exam

25% Second Prelim Exam

35% Final Exam

You’ll get a separate grade on the “quality point” scalee.g., 2.5–3.5 is the B range) for
each of these five components; course grade is weighted average.

0.1 Outline

Part One:

1. Descriptive Statistics (Chapter One)

2. Probability (Chapter Two)

3. Discrete Random Variables (Chapter Three)

Part Two:

1. Continuous Random Variables (Chapter Four)

2. Joint Probability Distributions & Random Samples (Chapter Five)

Warning: part two may be considerably more challenging, especially if your knowledge
of calculus is limited or rusty.
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1 Perspective

Probability and Statistics are powerful tools, because they let us talk in quantitative ways
about things that are uncertain or random. We may not be able to say whether the first
person listed on page 47 of next year’s phone book will be male or female, left-handed,
right-handed or ambidextrous, but we can assign probabilities to those alternatives. And
if we choose a large number of people at random we can predict that the number who are
left-handed will fall within a certain range. Conversely, if we make many observations, we
can use those to model the underlying probabilities of alternatives, and to predict the likely
results of future observations. All of this can be done without deterministic predictions that
one particular observation will definitely have a given result.

Some terminology:

• A Population is a set of objects of interest (people, cards in a deck, cars manufactured
in a given year, etc).

• A Census is a full accounting of all of the properties of the objects in a population.

• A Sample is one or more objects drawn from a population. One of the goals of statistics
is to use a smaller sample in place of a full census to learn about the population.

• Sometimes the “full population” may not actually exist. For example, if I roll a die
one or more times, I can make probabilistic statements about the outcome of that
die roll, but there isn’t really an underlying population of all die rolls. Instead, the
probabilities of different outcomes can be thought of as resulting from an imaginary or
hypothetical population, also known as a conceptual population.

Different branches of probability and statistics describe different parts of the problem:

• Descriptive statistics provides ways of describing properties of a sample to better
understand it. This is the subject of Chapter One of Devore, and the first week of this
course.

• The rules of Probability allow us to make predictions about the relative likelihood
of different possible samples, given properties of the underlying (real or hypothetical)
population. This is the subject of Chapters Two to Five of Devore, and makes up
much of this course.

• The field of Inferential Statistics is concerned with deducing the properties of an
underlying population from the properties of a sample. This is the subject of Chapters
Six and beyond of Devore, and will be covered in future courses on statistics.

2 Pictorial and Tabular Descriptions of Data

Imagine we have the set of 20 results, e.g., scores (out of 60) for students on a test:

56, 45, 37, 41, 41, 36, 27, 31, 41, 40, 48, 43, 43, 33, 44, 41, 35, 28, 37, 29
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Note that this is a particular kind of data, where the variable being measured (in this case
the score) falls into one of a countable set of values (in this case integers). The different
kinds of variables we can measure include:

• Discrete (not discreet) variables, whose possible values can be listed in a (possibly
infinite) sequence. Example: number of calls coming into a call center in an hour.

• Continuous variables, whose possible values consist of an interval (finite or infinite)
of real numbers. Example: a person’s height in centimeters.

• Categorical variables can take on one of a set of non-numerical categories. Example:
the sex (male or female) of a child.

The example we’re currently looking at concerns a discrete variable.
How do we get a handle on these numbers? One thing we can do is to list them in order

from lowest to highest:

27, 28, 29, 31, 33, 35, 36, 37, 37, 40, 41, 41, 41, 41, 43, 43, 44, 45, 48, 56

That’s starting to show us something. We can see a lot of results in the 40s, for example.

2.1 Stem-and-Leaf Displays

Collecting together the ordered list by decades is the basis for a simple tool in statistics (and
a feature in many software packages): the stem-and-leaf display:

2 7 8 9
3 1 3 5 6 7 7
4 0 1 1 1 1 3 3 4 5 8
5 6

This contains the same information, in a form that draws the eye to features like the spike
in the 40s.

2.2 Dotplots

Another way to represent the data is to lay out an evenly-spaced scale and put a dot for
each value. Since there are two 37s, we put two dots on top of each other there:
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2.3 Histograms

Stem-and-leaf plots and dotplots, which represent each individual data point, work well for
relatively small datasets, but if we had 200 or 2000 numbers to categorize rather than 20, it
would be difficult to interpret something with so many individual numbers. A histogram
is a good way to summarize data. For example, we could take our data and count 3 scores
in the 20s, 6 in the 30s, 10 in the 40s, and 1 in the 50s. A histogram is just a bar chart of
those numbers:
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(For the purposes of the display, “the 30s”, which includes the integers 30–39, is shown as
ranging from 29.5–39.5, since that’s the set of real numbers that would round off to those
integers.) Note that this looks a lot like a sideways version of the stem-and-leaf plot, where
the height of each bar is just the length (number of leaves) associated with each stem.

A histogram conceals some of the detail in a stem-and-leaf plot, but it’s also more flexible;
the categories need not be decades. For example, if I wanted to, I could make each category
four points wide, and use as categories 24-27, 28-31, 32-35, etc. Since we have 1 in the first
category, 3 in the second, 2 in the third, etc, the histogram looks like this:

Note that the dotplot above is also basically a histogram, with each bin one point wide.
A tunable feature in a histogram is the bin width, and choosing this width is important

to producing an intelligible histogram: too few bins, and you just get a couple of big blocks
that don’t carry much information; too many bins and you only have a few items in each
bin, and the whole thing looks ratty and conceals the broad trends. Devore gives a rule
of thumb that the number of bins of a histogram ought to be about the square root of the
number of data points.

Note that you don’t have to choose bins the same width, but if your bin widths are not
the same, you have to be careful not to create a deceptive histogram. Suppose we wanted to
choose the lowest bin to cover 24-35, combining the three lowest bins, and the highest bin
to cover 44-59, combining the three highest. Well, now there are six of the data points total
in the lowest interval and two in the highest, but if we plot that it’s not really fair:
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This is because we naturally look at the area of the bars as a gauge of how much data they
represent, and so for example, the last bin, being two units high and 12 points wide, looks
like it represents more data than the one next to it, two units high and only four points
wide. So the natural thing to do with unevenly binned histograms is to make the height of
each bar equal to the number of points divided by the width of the bins.

Now the area of each bar is equal to the number of points represented.
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Practice Problems

1.11, 1.15, 1.17, 1.29

Thursday 11 March 2010

3 Numerical Representations of Data

Pictures are nice, but often we need to boil down properties of the data to a few numbers.

3.1 Sample Mean and Median

The first thing we might want to know about a numerical dataset, is what is the typical or
average value.

What we usually mean by “average” is more precisely called the mean: add up all the
numbers and divide by how many there are. If we call the observed values x1, x2, etc up to
xn (so that there are n of them), the mean, which we write as x, is defined as

x =
x1 + x2 + . . .+ xn

n
=

1

n

n∑
i=1

xi (3.1)

In the example from Tuesday, this is

x =
776

20
= 38.8 (3.2)

This is more concretely called the sample mean because x1, x2, . . . xn (which I might write
as {xi|i = 1 . . . n}) is a sample out of a hypothetical population.

There are some drawbacks to using the mean as an illustration of the typical value. For
example, in this case there were also three students who had dropped the course by the time
of the exam (so in effect they got 0), and also one who got a 60, which I left out because
I wanted to have a multiple of four. If we include those, so that there are 24 scores, the
average becomes

x =
776 + 60

24
= 34.8 (3.3)

Whether those scores are included or not makes a pretty big difference to the sample mean,
but even with those included, only a third of the sample values (8 of 24) lie below the mean,
and two-thirds lie above it. An alternative approach is to split the data set into its upper
and lower half, and thus find the value which half lie above and half below:

0 0 0 27 28 29 31 33 35 36 37 37 | 40 41 41 41 41 43 43 44 45 48 56 60

Any value between 37 and 40 would work, but as a rule we take a number halfway in between,
38.5. This is called the median and we write it x̃. In general, x̃ is the middle value (when
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the values are listed in order) if n is odd, and the average of the two middle values if n is
even (as it is here). Note that the median is not sensitive to those exremely high or low
values the way the mean is; it doesn’t matter that they’re 0; they could be any number
below 38.5. (This makes it particularly sensible in this case, because students who dropped
the class would probably have scored somewhere in the lower half of the class on the test.)

If we had used the original data set, the median would have been 40.5; still higher, but
not as big a change.

27 28 29 31 33 35 36 37 37 40 | 41 41 41 41 43 43 44 45 48 56

3.2 Population Mean and Median

Just as you can define the mean and median for a sample, you could do the same thing for
the whole population. This is easy to write down if the population has a finite number of
members, call it N . The population mean is written µ and defined as

µ =
1

N

N∑
i=1

xi (3.4)

The only difference to the definition of the sample mean is that the sum is over the whole
population and not just the sample.

Similarly, the population median µ̃ is the value such that half of the population lies
above and half below it.

Note that there is some inconsistency in the notation, because the population mean µ is
not written with a bar. The notation is summarized as

Sample Population
mean x µ

median x̃ µ̃

3.3 Quartiles, Boxplots, Fourth Spread, and Outliers

Having divided the data into halves, we could also divide it into fourths, and use that to get
a sense of how spread out they are:

0 0 0 27 28 29 | 31 33 35 36 37 37 | 40 41 41 41 41 43 | 43 44 45 48 56 60

The bottom fourth runs from 0 to 29; the second fourth runs from 31 to 37; the third fourth
from 40 to 43, and the top fourth from 43 to 60. Of course, that’s now eight numbers, but
doesn’t convey that much information, so we can average the points on the boundaries to
get what’s called the “five-number summary”:

• The smallest value is 0

• The lower fourth boundary is 30

• The median is 38.5
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• The upper fourth boundary is 43

• The largest value is 60

That can be summarized in a plot:

We can see at a glance that the data spread out more below the median than above it.
One measure of the amount of spread is the difference between the lower fourth and upper
fourth, i.e., how much the middle half of the data are spread out. We call this the fourth
spread and write it fs In our case that is

fs = 43− 30 = 13 (3.5)

The presence of the three scores at zero is sort of concealing the spread of most of the
data. We call those scores “outliers” since they lie far away from most of the data. One
precise definition of an outlier, which we’ll use in this course, is in terms of the fourth spread:

• An outlier is any data point more than 1.5fs away from the closest fourth boundary
(upper or lower)

• An extreme outlier is any data point more than 3fs away from the closest fourth
boundary (upper or lower)

• A mild outlier is an outlier which is not extreme.

In our case, fs = 13, so 1.5fs = 19.5 and 3fs = 39. Since the upper and lower fourths are 30
and 43, in our example

• x is an extreme outlier if x < −9 or x > 82 (both of which are actually impossible
given the range of possible scores on the exam)

• x is a mild outlier if −9 ≤ x < 10.5 or 62.5 < x ≤ 82
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We can show outliers in a boxplot by putting dots for the individual values and then only
having the “whiskers” go out to the lowest and highest non-outlier values, which in this case
are 27 and 60.

(If there were extreme outliers, we’d represent them with open circles.)

3.4 Variance and Standard Deviation

The fourth spread is sort of an anologue to the median. To make a measure of variability
analogous to the mean, we should look for some sort of average difference from the typical
value.

It turns out to be easier to think about the population first, so let’s think about how all
of the values differ from the population mean µ. One idea would be to take the average of
xi − µ, but that quickly runs into a problem. It is

(x1 − µ) + (x2 − µ) + . . .+ (xN − µ)

N
=

1

N

N∑
i=1

(xi − µ) (3.6)

Now, we can reorganize the terms in the numerator, to collect the N different xis and the
N copies of µ, and that gives us

(x1 + x2 + . . .+ xn)

N copies︷ ︸︸ ︷
−µ− µ . . .− µ

N
=

(
1

N

N∑
i=1

xi

)
− Nµ

N
(3.7)

But the expression in the big parentheses is just µ, so we end up with

1

N

N∑
i=1

(xi − µ) = µ− µ = 0 . (3.8)
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The problem is that the terms with xi < µ were negative and taken together they cancelled
out those with xi > µ. We want something that measures how far away each member of the
population is from µ, in a form where values that are smaller and larger will both contribute
positively. So instead we take the average of (xi − µ)2; we’re guaranteed that each term is
either zero or positive, and so the sum will be zero or positive. (And it’ll only be zero if all
of the terms are zero, i.e., each value in the population is the same.) This is the population
variance

σ2 =
1

N

N∑
i=1

(xi − µ)2 . (3.9)

Since the population variance is guaranteed not to be negative, we can take its square root
and get what’s called the population standard deviation

σ = +
√
σ2 . (3.10)

Now let’s think about a sample of n objects drawn from the population. We know
the sample mean x is an estimate of the underlying population mean µ, and the sample
median x̃ is an estimate of the population median µ̃. We’d like to construct something from
the sample to approximate the population variance σ2. What you’d like to do is average
(xi−µ)2 over the sample, but we don’t know the population mean µ because it’s a property
of the underlying population, not just of the sample. so the best thing we can do is use the
sample mean x as a stand-in. But the average of (xi − x)2 turns out to be an understimate
of the population variance σ2, because you’re using the same data to estimate the mean and
the variance. Actually

1

n

n∑
i=1

(xi − x)2 is an estimate of

(
n− 1

n

)
σ2 . (3.11)

The demonstration of this is a little involved, but we can see it for the simple case where
n = 1. If there’s only one item in the sample, than the sample mean must be x = x1. But
then the average of (x1−x)2 is zero no matter what σ is, which is what (3.11) says for n = 1.

In general, (3.11) tells us that we should define the sample variance by

s2 =
1

n− 1

n∑
i=1

(xi − x)2 (3.12)

and the sample standard deviation by

s = +
√
s2 (3.13)

Note that for practical computations of both σ2 and s2 one typically uses a shortcut that
comes from expanding the square:

Sxx =
n∑

i=1

(xi − x)2 =
n∑

i=1

[
(xi)

2 − 2xix+ (x)2
]

=
n∑

i=1

(xi)
2 −

n∑
i=1

(2xix) +
n∑

i=1

(x)2

=
n∑

i=1

(xi)
2 − 2x

n∑
i=1

xi + n(x)2 =
n∑

i=1

(xi)
2 − 2x(nx) + n(x)2 =

n∑
i=1

(xi)
2 − n(x)2

(3.14)
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This means that

s2 =
1

n− 1
Sxx =

1

n− 1

n∑
i=1

(xi)
2 − n

n− 1
(x)2 . (3.15)

By a similar argument

σ2 =
1

N

N∑
i=1

(xi)
2 − (µ)2 . (3.16)

Practice Problems

1.33, 1.35, 1.39, 1.49, 1.51, 1.69, 1.73
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