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Tuesday 16 March 2010

1 Axiomatic Probability

Many of the rules of probability appear to be self-evident, but an important
part of mathematics is illustrating that our intuition agrees with the logical
outcome of our models. To that end, Devore develops with some care a math-
ematical theory of probability. We’ll mostly summarize the key definitions
and results here.

1.1 Outcomes and Events

Devore defines probability in terms of an experiment which can have one
of a set of possible outcomes.

• The sample space of an experiment, written S, is the set of all possible
outcomes.

• An event is a subset of S, a set of possible outcomes to the experiment.
Special cases are:

– The null event ∅ is an event consisting of no outcomes (the
empty set)

– A simple event consists of exactly one outcome

– A compound event consists of more than one outcome

The sample space S itself an event, of course.
One example of an experiment is flipping a coin three times. The out-

comes in that case are HHH, HHT , HTH, HTT , THH, THT , TTH, and
TTT . Possible outcomes include:

• Exactly two heads: {HHT,HTH, THH}
• The first flip is heads: {HHH,HHT,HTH,HTT}
• The second and third flips are the same: {HHH,HTT, THH, TTT}

Another example is a game of craps, in which:

• if a 2, 3 or 12 is rolled on the first roll, the shooter loses

• if a 7 or 11 is rolled on the first roll, the shooter wins

• if a 4, 5, 6, 8, 9, or 10 is rolled on the first roll, the dice are rolled again
until the either that number or a 7 comes up, in which case the shooter
wins or loses, respectively.
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In this case there are an infinite number of outcomes in S, some of which
are: 2, 3, 7, 11, 12, 4|4, 4|7, 5|5, 5|7, 6|6, 6|7, 8|8, 8|7, 9|9, 9|7, 10|10,
10|7, 4|2|4, 4|3|4, 4|5|4, 4|6|4, . . . . Possible events include: the shooter wins
{7, 11, 4|4, 5|5, 6|6, 8|8, . . .}; the shooter loses {2, 3, 12, 4|7, . . .}; the dice are
thrown exactly once {2, 3, 7, 11, 12}, etc.

Since an event is a set of outcomes, we can use all of the machinery of set
theory, specifically:

• The complement A′ of a set A, is the set of all outcomes in S which
are not in A.

• The union A∪B of two sets A and B, is the set of all outcomes which
are in A or B, including those which are in both.

• The intersection A ∩ B is the set of all outcomes which are in both
A and B.

In the case of coin flips, if the events are A = {HHT,HTH, THH}
(exactly two heads) and B = {HHH,HHT,HTH,HTT} (first flip heads),
we

A′ = {HHH,HTT, THT, TTH, TTT}
A ∪B = {HHH,HHT,HTH,HTT, THH}

A ∩B = {HHT,HTH}

Another useful definition is that A and B are disjoint or mutually
exclusive events if A ∩B = ∅.

1.2 Rules of Probability

Having formally defined what we mean by an event, we can proceed to define
the probability of that event, which we think of as the chance that it will
occur. Devore starts with three axioms

1. For any event A, P (A) ≥ 0

2. P (S) = 1

3. Given an infinite collection A1, A2, A3, . . . of disjoint events,

P (A1 ∪ A2 ∪ A3 ∪ · · · ) = P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai) (1.1)
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From there he manages to derive a bunch of other sensible results, such as

1. For any event A, P (A) ≤ 1

2. P (∅) = 0

3. P (A′) = 1− P (A)

One useful result concerns the probability of the union of any two events.
Since A ∪ B = (A ∩ B′) ∪ (A ∩ B) ∪ (A′ ∩ B), the union of three disjoint
events,

P (A ∪B) = P (A ∩B′) + P (A ∩B) + P (A′ ∩B) (1.2)

On the other hand, A = (A∩B′)∪ (A∩B) and B = (A∩B)∪ (A′ ∩B), so

P (A) = P (A ∩B′) + P (A ∩B) (1.3a)

P (B) = P (A ∩B) + P (A′ ∩B) (1.3b)

which means that

P (A) +P (B) = P (A∩B′) + 2P (A∩B) +P (A′∩B) = P (A∪B) +P (A∩B)
(1.4)

so
P (A ∪B) = P (A) + P (B)− P (A ∩B) (1.5)

1.3 Assigning Probabilities

The axioms of probability let us relate the probabilities of different events,
but they don’t tell us what those probabilities should be in the first place. If
we have a way of assigning probabilities to each outcome, and therefore each
simple event, then we can use the sum rule for disjoint events to write the
probability of any event as the sum of the probabilities of the simple events
which make it up. I.e.,

P (A) =
∑

Ei in A

P (Ei) (1.6)

One possibility is that each outcome, i.e., each simple event might be
equally likely. In that case, if there are N outcomes total, the probability of
each of the simple events is P (Ei) = 1/N (so that

∑N
i=1 P (Ei) = P (S) = 1),

and in that case

P (A) =
∑

Ei in A

1

N
=

N(A)

N
(1.7)
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where N(A) is the number of outcomes which make up the event A.
Note, however, that one has to consider whether it’s appropriate to take

all of the outcomes to be equally likely. For instance, in our craps example,
we considered each roll, e.g., 2 and 4, to be its own outcome. But you can
also consider the rolls of the individual dice, and then the two dice totalling
4 would be a composite event consisting of the outcomes (1, 3), (2, 2), and
(3, 1). For a pair of fair dice, the 36 possible outcomes defined by the numbers
on the two dice taken in order (suppose one die is green and the other red)
are equally likely outcomes.

2 Counting Techniques

2.1 Ordered Sequences

We can come up with 36 as the number of possible results on a pair of fair
dice in a couple of ways. We could make a table

1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

which is also useful for counting the number of occurrences of each total. Or
we could use something called a tree diagram:
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This works well for counting a small number of possible outcomes, but already
with 36 outcomes it is becoming unwieldy. So instead of literally counting
the possible outcomes, we should calculate how many there will be. In this
case, where the outcome is an ordered pair of numbers from 1 to 6, there are
6 possibilities for the first number, and corresponding to each of those there
are 6 possibilities for the second number. So the total is 6× 6 = 36.

More generally, if we have an ordered set of k objects, with n1 possibilities
for the first, n2 for the second, etc, the number of possible ordered k-tuples
is n1n2 . . . nk, which we can also write as

k∏
i=1

nk . (2.1)

2.2 Permutations and Combinations

Consider the probability of getting a poker hand (5 cards out of the 52-card
deck) which consists entirely of hearts.1 Since there are four different suits,
you might think the odds are (1/4)(1/4)(1/4)(1/4)(1/4) = (1/4)5 = 1/45.

1This is, hopefully self-apparently, one-quarter of the probability of getting a flush of
any kind.

6



However, once a heart has been drawn on the first card, there are only 12
hearts left in the deck out of 51; after two hearts there are 11 out of 50, etc.,
so the actual odds are

P (♥♥♥♥♥) =

(
13

52

)(
12

51

)(
11

50

)(
10

49

)(
9

48

)
(2.2)

This turns out not to be the most effective way to calculate the odds of
poker hands, though. (For instance, it’s basically impossible to do a card-
by-card accounting of the probabability of getting a full house.) Instead
we’d like to take the approach of counting the total number of possible five-
card hands (outcomes) and then counting up how many fall into a particular
category (event). The terms for the quantities we will be interested in are
permutation and combination.

First, let’s consider the number of possible sequences of five cards drawn
out of a deck of 52. This is the permutation number of permutations of 5
objects out of 52, called P5,52. The first card can be any of the 52; the second
can be any of the remaining 51; the third can be any of the remaining 50,
etc. The number of permutations is

P5,52 = 52× 51× 50× 49× 48 (2.3)

In general

Pk,n = n(n− 1)(n− 2) · · · (n− k + 1) =
k−1∏
`=0

(n− `) . (2.4)

Now, there is a handy way to write this in terms of the factorial function.
Remember that the factorial is defined as

n! = n(n− 1)(n− 1) · · · (2)(1) =
n∏

`=1

` (2.5)

with the special case that 0! = 1. Then we can see that

n!

(n− k)!
=

n(n− 1)(n− 2) · · · (n− k + 1)����(n− k)������
(n− k − 1) · · ·��(2)��(1)

����(n− k)������
(n− k − 1) · · ·��(2)��(1)

= Pk,n

(2.6)
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Note in particular that the number of ways of arranging n items is

Pn,n =
n!

(n− n)!
=

n!

0!
= n! (2.7)

Now, when we think about the number of different poker hands, actually
we don’t consider the cards in a hand to be ordered. So in fact all we care
about is the number of ways of choosing 5 objects out of a set of 52, without
regard to order. This is the number of combinations, which is sometimes
written C5,52, but which we’ll write as

(
52
5

)
, pronounced “52 choose 5”. When

we counted the number of different permutations of 5 cards out of 52, we
actually counted each possible hand a bunch of times, once for each of the
ways of arranging the cards. There are P5,5 = 5! different ways of arranging
the five cards of a poker hand, so the number of permutations of 5 cards out
of 52 is the number of combinations times the number of permutations of the
5 cards among themselves:

P5,52 =

(
52

5

)
P5,5 (2.8)

The factor of P5,5 = 5! is the factor by which we overcounted, so we divide
by it to get (

52

5

)
=

P5,52

P5,5

=
52!

47!5!
= 2598960 (2.9)

or in general (
n

k

)
=

n!

(n− k)!k!
(2.10)

So to return to the question of the odds of getting five hearts, there
are

(
52
5

)
different poker hands, and

(
13
5

)
different hands of all hearts (since

there are 13 hearts in the deck), which means the probability of the event
A = ♥♥♥♥♥ is

P (A) =
N(A)

N
=

(
13
5

)(
52
5

) =
13!
8!5!
52!
47!5!

=
13!47!

8!52!
=

(13)(12)(11)(10)(9)

(52)(51)(50)(49)(48)
(2.11)

which is of course what we calculated before. Numerically, P (A) ≈ 4.95 ×
10−4, while 1/45 ≈ 9.77× 10−4. The odds of getting any flush are four times
the odds of getting an all heart flush, i.e., 1.98× 10−3.
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Actually, if we want to calculate the odds of getting a flush, we have
over-counted somewhat, since we have also included straight flushes, e.g.,
4♥-5♥-6♥-7♥-8♥. If we want to count only hands which are flushes, we
need to subtract those. Since aces can count as either high or low, there are
ten different all-heart straight flushes, which means the number of different
all-heart flushes which are not straight flushes is(

13

5

)
− 10 =

13!

8!5!
− 10 = 1287− 10 = 1277 (2.12)

and the probability of getting an all-heart flush is 4.92×10−4, or 1.97×10−3

for any flush.
Exercise: work out the number of possible straights and therefore the

odds of getting a straight.

Practice Problems

2.5, 2.9, 2.13, 2.17, 2.29, 2.33, 2.43
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3 Conditional Probabilities and Tree Diagrams

3.1 Example: Odds of Winning at Craps

Although there are an infinite number of possible outcomes to a craps game,
we can still calculate the probability of winning.

First, the sample space can be divided up into mutually exclusive events
based on the result of the first roll:

Event Probability Result of game

2, 3 or 12 on 1st roll 1+2+1
36

= 4
36
≈ 11.1% lose

7 or 11 on 1st roll 6+2
36

= 8
36
≈ 22.2% win

4 or 10 on 1st roll 3+3
36

= 6
36
≈ 16.7% ???

5 or 9 on 1st roll 4+4
36

= 8
36
≈ 22.2% ???

6 or 8 on 1st roll 5+5
36

= 10
36
≈ 27.8% ???

The last three events each contain some outcomes that correspond to win-
ning, and some that correspond to losing. We can figure out the probability
of winning if, for example, you roll a 4 initially. Then you will win if another
4 comes up before a 7, and lose if a 7 comes up before a 4. On any given
roll, a 7 is twice as likely to come up as a 4 (6/36 vs 3/36), so the odds are
6/9 = 2/3 ≈ 66.7% that you will roll a 7 before a 4 and lose. Thus the odds
of losing after starting with a 4 are 66.7%, while the odds of winning after
starting with a 4 are 33.3%. The same calculation applies if you get a 10 on
the first roll. This means that the 6/36 ≈ 16.7% probability of rolling a 4 or
10 initially can be divided up into a 4/36 ≈ 11.1% probability to start with
a 4 or 10 and eventually lose, and a 2/36 ≈ 5.6% probability to start with a
4 or 10 and eventually win.

We can summarize this branching of probabilities with a tree diagram:
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The probability of winning given that you’ve rolled a 4 or 10 initially is an
example of a conditional probability. If A is the event “roll a 4 or 10 initially”
and B is the event “win the game”, we write the conditional probability for
event B given that A occurs as P (B|A). We have argued that the probability
for both A and B to occur, P (A ∩ B), should be the probability of A times
the conditional probability of B given A, i.e.,

P (A ∩B) = P (B|A)P (A) (3.1)

We can use this to fill out a table of probabilities for different sets of outcomes
of a craps game, analogous to the tree diagram.

A P (A) B P (B|A) P (A ∩B) = P (B|A)P (A)

2, 3 or 12 on 1st roll .111 lose 1 .111
7 or 11 on 1st roll .222 win 1 .222

4 or 10 on 1st roll .167
lose .667 .111
win .333 .056

5 or 9 on 1st roll .222
lose .6 .133
win .4 .089

6 or 8 on 1st roll .278
lose .545 .152
win .455 .126
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Since the rows all describe disjoint events whose union is the sample space
S, we can add the probabilities of winning and find that

P (win) ≈ .222 + .056 + .089 + .126 ≈ .493 (3.2)

and
P (lose) ≈ .111 + .111 + .133 + .152 ≈ .507 (3.3)

3.2 Definition of Conditional Probability

We’ve motivated the concept of conditional probability and applied it via
(3.1). In fact, from a formal point of view, conditional probability is defined
as

P (B|A) =
P (A ∩B)

P (A)
. (3.4)

We actually used that definition in another context above without realizing
it, when we were calculating the probability of rolling a 7 before rolling a
4. We know that P (7) = 6/36 and P (4) = 3/36 on any given roll. The
probability of rolling a 7 given that the game ends on that throw is

P (7|7 ∪ 4) =
P (7)

P (7 ∪ 4)
=

P (7)

P (7) + P (4)
=

6/36

9/36
=

6

9
(3.5)

We calculated that using the definition of conditional probability.

4 Bayes’s Theorem

Some of the arguments in this section are adapted from
http://yudkowsky.net/rational/bayes

which gives a nice explanation of Bayes’s theorem.
The laws of probability are pretty good at predicting how likely something

is to happen given certain underlying circumstances. But often what you
really want to know is the opposite: given that some thing happened, what
were the circumstances? The classic example of this is a test for a disease.

Suppose that one one-thousandth of the population has a disease. There
is a test that can detect the disease, but it has a 2% false positive rate
(on average one out of fifty healthy people will test positive) and as 1%
false negative rate (on average one out of one hundred sick people will test
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negative). The question we ultimately want to answer is: if someone gets
a positive test result, what is the probability that they actually have the
disease. Note, it is not 98%!

4.1 Approach Considering a Hypothetical Population

The standard treatment of Bayes’s Theorem and the Law of Total Probabil-
ity can be sort of abstract, so it’s useful to keep track of what’s going on by
considering a hypothetical population which tracks the various probabilities.
So, assume the probabilities arise from a population of 100,000 individuals.
Of those, one one-one-thousandth, or 100, have the disease. The other 99,900
do not. The 2% false positive rate means that of the 99,900 healthy indi-
viduals, 2% of them, or 1,998, will test positive. The other 97,902 will test
negative. The 1% false negative rate means that of the 100 sick individuals,
one will test negative and the other 99 will test positive. So let’s collect this
into a table:

Positive Negative Total

Sick 99 1 100
Healthy 1,998 97,902 99,900

Total 2,097 97,903 100,000

(As a reminder, if we choose a sample of 100,000 individuals out of a larger
population, we won’t expect to get exactly this number of results, but the
100,000-member population is a useful conceptual construct.)

Translating from numbers in this hypothetical population, we can confirm
that it captures the input information:

P (sick) =
100

100, 000
= .001 (4.1a)

P (positive|healthy) =
1, 998

99, 900
= .02 (4.1b)

P (negative|sick) =
1

100
= .01 (4.1c)

But now we can also calculate what we want, the conditional probability of
being sick given a positive result. That is the fraction of the total number
of individuals with positive test results that are in the “sick and positive”
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category:

P (sick|positive) =
99

2, 097
≈ .04721 (4.2)

or about 4.7%.
Note that we can forego the artificial construct of a 100,000-member hy-

pothetical population. If we divide all the numbers in the table by 100,000,
they become probabilities for the corresponding events. For example,

P (sick ∩ positive) =
99

100, 000
= .00099

That is the approach of the slightly more axiomatic (and general) method
described in the next section.

4.2 Approach Using Axiomatic Probability

The quantity we’re looking for (the probability of being sick, given a positive
test result) is a conditional probability. To evaluate it, we need to define
some events about which we’ll discuss the probability. First, consider the
events

A1 ≡ “individual has the disease” (4.3a)

A2 ≡ “individual does not have the disease” (4.3b)

These make a mutually exclusive, exhaustive set of events, i.e., A1 ∩A2 = ∅
and A1 ∩ A2 = S. (We call them A1 and A2 because in a more general case
there might be more than two events in the mutually exclusive, exhaustive
set.) We are told in the statement of the problem that one person in 1000
has the disease, which means that

P (A1) = .001 (4.4a)

P (A2) = 1− P (A1) = .999 (4.4b)

(4.4c)

Now consider the events associated with the test:

B ≡ “individual tests positive” (4.5a)

B′ ≡ “individual tests negative” (4.5b)
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(We call them B and B′ because we will focus more on B.) The 2% false
positive and 1% false negative rates tell us

P (B|A2) = .02 (4.6a)

P (B′|A1) = .01 (4.6b)

Note that if we want to talk about probabilities involving B, we should use
the fact that

P (B|A1) + P (B′|A1) = 1 (4.7)

to state that
P (B|A1) = 1− P (B′|A1) = .99 (4.8)

Now we can write down the quantity we actually want, using the definition
of conditional probability:

P (A1|B) =
P (A1 ∩B)

P (B)
(4.9)

Now, we don’t actually have an expression for P (A1 ∩B) or P (B) yet. The
fundamental things we know are

P (A1) = .001 (4.10a)

P (A2) = .999 (4.10b)

P (B|A2) = .02 (4.10c)

P (B|A1) = .99 (4.10d)

However, we know how to calculate P (A1∩B) and P (B) from the things we
do know. First, to get P (A1 ∩B), we can notice that we know P (B|A1) and
P (A1), so we can solve

P (B|A1) =
P (A1 ∩B)

P (A1)
(4.11)

for
P (A1 ∩B) = P (B|A1)P (A1) = (.99)(.001) = .00099 (4.12)

Logically, the probability of having the disease and testing positive for it is
the probability of having the disease in the first place times the probability
of testing positive, given that you have the disease.
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Since we know P (B|A2) and P (A2) we can similarly calculate the prob-
ability of not having the disease but testing positive anyway:

P (A2 ∩B) = P (B|A2)P (A2) = (.02)(.999) = .01998 (4.13)

But now we have enough information to calcuate P (B), since the overall
probability of testing positive for the disease has to be the probability of
having the disease and testing positive plus the probability of not having the
diesease and testing positive:

P (B) = P (A1 ∩B) + P (A2 ∩B) = .00099 + .01998 = .02097 (4.14)

This is an application of the Law of total probability, which says, in the more
general case of k mutually exclusive, exhaustive events A1, . . . Ak,

P (B) = P (B∩A1)+ · · ·+P (B∩Ak) = P (B|A1)P (A1)+ · · ·+P (B|Ak)P (Ak)
(4.15)

Now we are ready to calculate

P (A1|B) =
P (A1 ∩B)

P (B)
=

.0099

.02097
≈ .04721 (4.16)

So only about 4.7% of people who test positive have the disease. It’s a lot
more than one in a thousand, but a lot less than 99%.

This is an application of Bayes’s theorem, which says

P (A1|B) =
P (A1 ∩B)

P (B)
=

P (B|A1)P (A1)

P (B|A1)P (A1) + P (B|A2)P (A2)
(4.17)

or, for k mutually exclusive, exhaustive alternatives,

P (A1|B) =
P (B|A1)P (A1)∑k
i=1 P (B|Ai)P (Ai)

(4.18)

Practice Problems

2.45, 2.59, 2.63, 2.71, 2.105 parts a & b
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