1016-351-70 Probability

Problem Set 6

Assigned 2010 April 20 Due 2010 April 27

Show your work on all problems!

1 Devore Chapter 4, Problem 60

2 Devore Chapter 4, Problem 66

- 3 Devore Chapter 4, Problem 71
- 4 Devore Chapter 4, Problem 80

5 Computational Exercise (Extra Credit)

Download the two data sets for this problem from

 $\tt http://ccrg.rit.edu/~whelan/courses/2010_1sp_1016_351/data/ps06_prob5_set1.datand$

http://ccrg.rit.edu/~whelan/courses/2010_1sp_1016_351/data/ps06_prob5_set2.dat using the credentials given in class.

For each dataset, construct a normal probability plot by sorting the data into ascending order and plotting $z_{1-(i-.5)/n}$ vs x_i , where n is the number of points in the dataset, $i = 1 \dots n$, x_i is the *i*th datapoint in the sorted set, and z_{α} is defined as usual by $\Phi(z_{\alpha}) = 1 - \alpha$. You may find it useful to construct a function which uses the inverse error function to calculate z_{α} for a given α ; e.g., in scipy/matplotlib, you can use

```
from scipy.special import erfinv
def zscore(Phi):
    return np.sqrt(2) * erfinv( 2.0 * Phi - 1.0 )
```