1016-351-70
 Probability

Problem Set 8

Assigned 2010 May 4
Due 2010 May 11

Show your work on all problems!

1 Devore Chapter 5, Problem 38

2 Devore Chapter 5, Problem 46

3 Devore Chapter 5, Problem 50

4 Devore Chapter 5, Problem 72

5 Devore Chapter 5, Problem 89 (Extra Credit)

[This problem provides the theoretical justification for our original definition of a chi-squared random variable as the sum of the squares of independent standard normal rvs.-JTW]

6 Computational Exercise (Extra Credit)

A random variable X obeying a χ^{2} distribution with ν degrees of freedom has a pdf

$$
f(x ; \nu)= \begin{cases}\frac{1}{2^{\nu / 2} \Gamma(\nu / 2)} x^{(\nu / 2)-1} e^{-x / 2} & x>0 \tag{6.1}\\ 0 & x<0\end{cases}
$$

as well as a mean $\mu=\nu$ and variance $\sigma^{2}=2 \nu$. Since it is the sum of ν iid rvs (each of which is the square of a standard normal random variable), the central limit theorem says that it should be approximated, in the limit that ν is large, by a normal distribution

$$
\begin{equation*}
f(x ; \nu) \approx f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} \tag{6.2}
\end{equation*}
$$

a. For $0<x<20$, plot the exact chi-squared pdf and the normal approximation for $\nu=5$.
b. For $0<x<200$, plot the exact chi-squared pdf and the normal approximation for $\nu=50$.

Warning: If you use matplotlib via
ipython -pylab
the gamma imported into your namespace produces gamma-distributed random variables; if you want the gamma function to calculate $\Gamma(\nu / 2)$ you'll need
from scipy.special import gamma

