1016-351-70
 Probability

In-class exercise
2010 April 13

Consider a continuous random variable with the uniform probability density function

$$
f(x)= \begin{cases}\frac{1}{B-A} & A<x<B \\ 0 & \text { otherwise }\end{cases}
$$

a. Verify that $f(x)$ is normalized, i.e., that

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

The integral is

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{-\infty}^{A} f(x) d x+\int_{A}^{B} f(x) d x+\int_{B}^{\infty} f(x) d x=0+\int_{A}^{B} \frac{1}{B-A} d x+0 \\
& =0+\left.\frac{x}{B-A}\right|_{A} ^{B}+0=\frac{B-A}{B-A}=1
\end{aligned}
$$

so $f(x)$ is indeed normalized.
b. Sketch the graph of $f(x)$. Label the axes.

(There are other possible choices of which tickmarks get which labels, but I wanted the 0 values to be clearly visible.) Note that the pdf is discontinuous, which is fine. Note also that it doesn't really matter what value the pdf $f(x)$ takes on at those points $(x=A$ and $x=B)$, since $f(x)$ always gets put under an integral to convert it into a probability.

c. Find the cumulative distribution $F(x)$.

The cdf is the probability

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(y) d y
$$

Note that we have to call the integration variable y rather than x because x is the upper limit of the integral. If you have a definite integral, the integration variable should never appear in the limits of integration, nor anywhere outside the integral.

Because $f(x)$ has a different form for $x \leq A$, for $A \leq x \leq B$, and for $B \leq x$, the results of the integral will be different depending on where x lies:

$$
\text { If } x \leq A, \quad F(x)=\int_{-\infty}^{x} f(y) d y=0
$$

because the integrand is zero over the whole range of integration.

$$
\text { If } A \leq x \leq B, \quad F(x)=\int_{-\infty}^{A} f(y) d y+\int_{A}^{x} f(y) d y=0+\left.\frac{y}{B-A}\right|_{A} ^{x}=\frac{x-A}{B-A}
$$

Finally,

$$
\text { If } B \leq x, \quad F(x)=\int_{-\infty}^{A} f(y) d y+\int_{A}^{B} f(y) d y+\int_{B}^{x} f(y) d y=0+1+0=1
$$

Putting it all together,

$$
F(x)= \begin{cases}0 & x \leq A \\ \frac{x-A}{B-A} & A \leq x \leq B \\ 1 & B \leq x\end{cases}
$$

Alternate solution using indefinite integrals:

Note that you can also do this by noting that since $F^{\prime}(x)=f(x)$,

$$
F(x)=\int f(x) d x
$$

where now this is an indefinite integral. Then we have to take the antiderivative of the form of $f(x)$ in each interval:

$$
\begin{gathered}
\text { If } x \leq A, \quad F(x)=\int 0 d x=C_{1} \\
\text { If } A \leq x \leq B, \quad F(x)=\int \frac{1}{B-A} d x=\frac{x}{B-A}+C_{2} \\
\text { If } B \leq x, \quad F(x)=\int 0 d x=C_{3}
\end{gathered}
$$

Because these are indefinite integrals, we have to include an arbitrary constant (C_{1}, C_{2} and C_{3}, respectively), which is in general different for each integral. Then we need to find the values of these constants which ensure that $F(-\infty)=0$ and that $F(x)$ is continuous, which it must be for a continuous random variable. (We can then check that $F(\infty)=1$, which must be the case if the pdf $f(x)$ was properly normalized, and we didn't make any mistakes.) We find C_{1} from

$$
F(-\infty)=C_{1}=0
$$

so that

$$
\text { If } x \leq A, \quad F(x)=0
$$

and then find C_{2} from continuity at $x=A$

$$
F(A)=0=\frac{A}{B-A}+C_{2}
$$

so that

$$
C_{2}=-\frac{A}{B-A}
$$

and

$$
\text { if } A \leq x \leq B, \quad F(x)=\frac{x}{B-A}-\frac{A}{B-A}
$$

We then find C_{3} from continuity at $x=B$

$$
F(B)=\frac{B}{B-A}-\frac{A}{B-A}=1=C_{3}
$$

and thus

$$
\text { If } B \leq x, \quad F(x)=1
$$

Finally, we can then see that $F(\infty)=1$, so everything is consistent.
In the end the indefinite integral approach gives the right answer (of course) if you're careful about the integration constants. Personally, I find the approach with definite integrals to be easier, since the matching happens automatically.
d. Sketch the graph of $F(x)$. Label the axes.

Notice that the graph is continuous, as it must be for a continuous random variable.
e. Calculate the expected value $E(X)$ in terms of A and B.

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x f(x) d x=\int_{A}^{B} \frac{x}{B-A} d x=\left.\frac{1}{B-A} \frac{x^{2}}{2}\right|_{A} ^{B}=\frac{B^{2}-A^{2}}{2(B-A)} \\
& =\frac{(B+A)(B-A)}{2(B-A)}=\frac{A+B}{2}
\end{aligned}
$$

f. Calculate the variance $V(X)$ in terms of A and B.

The easiest way to do this is to calculate

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{A}^{B} \frac{x^{2}}{B-A} d x=\left.\frac{1}{B-A} \frac{x^{3}}{3}\right|_{A} ^{B}=\frac{B^{3}-A^{3}}{3(B-A)} \\
& =\frac{\left(B^{2}+A B+A^{2}\right)(B-A)}{3(B-A)}=\frac{B^{2}+A B+A^{2}}{3}
\end{aligned}
$$

And then

$$
\begin{aligned}
V(X) & =E\left(X^{2}\right)-(E(X))^{2}=\frac{B^{2}+A B+A^{2}}{3}-\left(\frac{A+B}{2}\right)^{2}=\frac{B^{2}+A B+A^{2}}{3}-\frac{A^{2}+2 A B+B^{2}}{4} \\
& =\frac{4 B^{2}+4 A B+4 A^{2}-3 A^{2}-6 A B-3 B^{2}}{12}=\frac{B^{2}-2 A B+A^{2}}{12}=\frac{(B-A)^{2}}{12}
\end{aligned}
$$

