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Tuesday 27 September 2011

Guest lecture by Dr. Tamas Wiandt. Here are some additional notes by Dr. Whelan

1 Contour Integrals

1.1 Definition and Properties

Recall the definition of the definite integral∫ xF

xI

f(x) dx = lim
∆xk→0

∑
k

f(xk) ∆xk (1.1)

We’d like to define a similar concept, integrating a function f(z) from some point zI to
another point zF . The problem is that, since zI and zF are points in the complex plane,
there are different ways to get between them, and adding up the value of the function along
one path will not give the same result as doing it along another path, even if they have the
same endpoints. So instead we need to define a contour integral∫

C
f(z) dz = lim

|∆zk|→0

∑
k

f(zk) ∆zk (1.2)

which in general depends on the path C by which we choose to go from the initial point zI to
the final point zF . To define such an integral, we parametrize the curve, i.e., write it as z(t)
where z(tI) = zI and z(tF ) = tF . (For example, if C is the semi-circle in the upper half-plane,
from zI = 1 to zF = −1, we can use the angular polar coördinate as the parameter, and
then z(t) = eit where tI = 0 and tF = π.) Given a parametrization of the curve, we define
the contour integral as∫

C
f(z) dz =

∫ tF

tI

f
(
z(t)

) dz
dt
dt =

∫ tF

tI

f
(
z(t)

)
z′(t) dt (1.3)

You might worry that we could get a different result by choosing a different parametrization
of the curve (e.g., suppose we’d chosen z(t) = eit

2/pi in the example above), but you can
show using the chain rule that the value of the integral doesn’t change.

To specify more concretely the value of the integral (1.3), write z(t) = x(t) + iy(t) and
f(x+iy) = u(x, y)+iv(x, y), where x(t), y(t), u(x, y) and v(x, y) are all real functions. Then∫

C
f(z) dz =

∫
C

[
u(x, y) + iv(x, y)

][
dx+ idy

]
=

∫ tF

tI

[
u
(
x(t), y(t)

)
+ iv

(
x(t), y(t)

)][
x′(t) + iy′(t)

]
dt

=

∫ tF

tI

[
u
(
x(t), y(t)

)
x′(t)− v

(
x(t), y(t)

)
y′(t)

]
dt

+ i

∫ tF

tI

[
u
(
x(t), y(t)

)
y′(t) + v

(
x(t), y(t)

)
x′(t)

]
dt

(1.4)
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Note that Zill and Wright’s equation (2), on page 797, which says sort of the same thing,
really should be written with some parentheses, to indicate that e.g., u dx and v dy are both
part of the first integral. I.e., it should read∫

C
f(z) dz =

∫
C

(
u dx− v dy

)
+ i

∫
C

(
v dx+ u dy

)
(1.5)

I would probably take points off on a test if it were written without the parentheses!
Because the contour integral is defined as the limit of a sum, it has the usual linearity

properties of an integral, i.e., if α and β are complex constants,∫
C

[
α f(z) + β g(z)

]
dz = α

∫
C
f(z) dz + β

∫
C
g(z) dz (1.6)

There are also contour equivalents of the properties of concatenation and reversal; just as∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx (1.7a)

and ∫ a

b

f(x) dx = −
∫ b

a

f(x) dx , (1.7b)

if C1 + C2 is the curve formed by chaining together C1 and C2 (which we can do if the final
point of C1 is the initial point of C2), then∫

C1+C2
f(z) dz =

∫
C1
f(z) dz +

∫
C2
f(z) dz (1.8)

and if −C is the curve we get by following C backwards (so the initial point of −C is the final
point of C and vice versa), then ∫

−C
f(z) dz = −

∫
C
f(z) dz (1.9)

1.2 Evaluation

[A few examples of evaluating contour integrals.]

1.3 The ML Limit

It is occasionally useful to place an upper limit on a contour integral, rather than evaluating
it. A limit that can be placed on any contour integral of a continuous function along a
smooth curve is the so-called ML limit:∣∣∣∣∫

C
f(z) dz

∣∣∣∣ ≤ML (1.10)

where M is the maximum value of |f(z)|:
|f(z)| ≤M for all z on C (1.11)

and L is the length of C.
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1.4 Circulation and Flux

The contour integral also appears in vector calculus, where can evaluate the integral of a
scalar field Ψ(~r) along some path ~r(t) as∫

C
Ψ(~r) ds =

∫ tF

tI

Ψ (~r(t))

∣∣∣∣d~rdt
∣∣∣∣ dt , (1.12)

where ∣∣∣∣d~rdt
∣∣∣∣ =

√
d~r

dt
· d~r
dt

. (1.13)

In two dimensions,
ds =

√
(dx)2 + (dy)2 (1.14)

i.e., ∣∣∣∣d~rdt
∣∣∣∣ =

√(
dx

dt

)2

+

(
dy

dt

)2

(1.15)

Given a vector field
~F (~r) = ~F (x, y) = Fx(x, y) x̂+ Fy(x, y) ŷ , (1.16)

and a smooth closed curve C, we’re often interested in two contour integrals, known as the
flux of ~F through C and the circulation of ~F around C. At each point on the closed curve
C we define a unit vector t̂ pointing along the curve in the counter-clockwise direction and
another unit vector n̂ pointing perpendicular to the curve in the outward direction. Then
the integrals of interest are

Circulation of ~F around C = 	
∫
C

~F · t̂ ds (1.17a)

Flux of ~F through C = 	
∫
C

~F · n̂ ds (1.17b)

where the arrow on the integral sign emphasizes that C is a closed curve traversed counter-
clockwise. A little bit of geometry shows

t̂ ds = x̂ dx+ ŷ dy (1.18a)

n̂ ds = x̂ dy − ŷ dx (1.18b)

so

Circulation = 	
∫
C

~F · t̂ ds = 	
∫
C

[Fx dx+ Fy dy] (1.19a)

Flux = 	
∫
C

~F · n̂ ds = 	
∫
C

[Fx dy − Fy dx] (1.19b)
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Now, consider our friend the Pólya vector field associated with a function f(z) = f(x+ iy) =
u(x, y) + iv(x, y), defined

~H = u(x, y) x̂− v(x, y)ŷ (1.20)

with the minus sign on the y component. Its circulation around and flux through some closed
curve C are

Circulation of ~H around C = 	
∫
C

[Hx dx+Hy dy] = 	
∫
C

[u dx− v dy] (1.21a)

Flux of ~H through C = 	
∫
C

[Hx dy −Hy dx] = 	
∫
C

[u dy + v dx] (1.21b)

But if we compare this to (1.4) or (1.5), we see that these are just the real and imaginary
parts of the contour integral 	

∫
C f(z) dz! I.e.,

Circulation of ~H = ux̂− vŷ around C = Re

(
	
∫
C
f(z) dz

)
(1.22a)

Flux of ~H = ux̂− vŷ through C = Im

(
	
∫
C
f(z) dz

)
(1.22b)

This once again shows the convenience of working with the Pólya vector field ~H = ux̂− vŷ;
compare these statements to equations (8) and (9) in Zill and Wright, which have to make
statements about the contour integral of the complex conjugate of f(z):

Circulation of ux̂+ vŷ around C = Re

(
	
∫
C
f(z) dz

)
(1.23a)

Flux of ux̂+ vŷ through C = Im

(
	
∫
C
f(z) dz

)
(1.23b)

Practice Problems

18.1.1, 18.1.3, 18.1.5, 18.1.7, 18.1.13, 18.1.17, 18.1.19, 18.1.21, 18.1.23

Thursday 29 September 2011

2 The Cauchy-Goursat Theorem

On Tuesday, we learned how to integrate a function along a contour in the complex plane.
If that function is analytic, as we will see, such integrals are much easier to evaluate. This is
because of a key result called the Cauchy-Goursat theorem and its consequences. The two
main results will be:

• For a closed curve C, if a function f(z) is analytic on C and everywhere in the region
bounded by C, the integral 	

∫
C f(z) dz of that function around that closed curve is zero.
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• If two curves C1 and C2 connect the same endpoints, and you can “deform” C1 into C2

without leaving the region in which f(z) is analytic, the contour integrals
∫
C1 f(z) dz

and
∫
C2 f(z) dz have the same value.

Let’s see why these results are true, and how they can help us evaluate contour integrals.

2.1 Integral Around a Closed Loop

First consider the integral around a closed curve C. Remember that we noted at the end
of Tuesday’s class that if f(z) = f(x + iy) = u(x, y) + iv(x, y), the contour integral of
f(z) around a closed curve is related to the flux and circulation of the Pólya vector field
~H = ux̂− vŷ around that curve:

	
∫
C
f(z) dz = 	

∫
C

~H · t̂ ds+ i	
∫
C

~H · n̂ ds =

(
Circulation of ~H

around C

)
+ i

(
Flux of ~H

through C

)
(2.1)

There is a result from vector calculus known as Green’s theorem, which has two equivalent
statements, one relating the circulation of a vector field to its curl and the other relating the
flux to the divergence. In both cases, let the closed curve C be the boundary of a region R.
Then Green’s theorem in its two forms says

	
∫
C
(Fx dx+ Fy dy) = 	

∫
C

~F · t̂ ds =
x

R

(
curl ~F

)
d2A =

x

R

(
∂Fy
∂x
− ∂Fx

∂y

)
dx dy (2.2a)

	
∫
C
(Fx dy − Fy dx) = 	

∫
C

~F · n̂ ds =
x

R

(
div ~F

)
d2A =

x

R

(
∂Fx
∂x

+
∂Fy
∂y

)
dx dy (2.2b)

Applying this to the Pólya vector field in (2.1) gives us

	
∫
C
f(z) dz = 	

∫
C

[u dx− v dy] + i	
∫
C

[u dy + v dx] = 	
∫
C

~H · t̂ ds+ i	
∫
C

~H · n̂ ds

=
x

R

(
curl ~H

)
d2A+ i

x

R

(
div ~H

)
d2A

=
x

R

(
−∂v
∂x
− ∂u

∂y

)
dx dy + i

x

R

(
∂u

∂x
− ∂v

∂y

)
dx dy

(2.3)

But recall that the divergence and curl of the Pólya vector field, which appear in the inte-
grands of the integrals over R, vanish when the Cauchy-Riemann equations are satisfied. So
if f(z) is analytic everywhere in R, then the divergence and curl of ~H = ux̂ − vŷ are zero

everywhere in R, which means the circulation of ~H around the boundary C and the flux of
H through that boundary are zero, which means the integral of f(z) around C is zero.

For an illustration of the relationship between flux and circulation and the integral of a
function around a closed curve, see
http://demonstrations.wolfram.com/PolyaVectorFieldsAndComplexIntegrationAlongClosedCurves/
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As specific example, consider f(z) = z; this is analytic everywhere. Let C be the circle
of radius a centered at the origin; one parametrization is

z = aeit t : 0→ 2π (2.4)

which has
dz = iaeit dt (2.5)

We expect the integral around C to be zero. Let’s check:

	
∫
C
f(z) dz = 	

∫
C
z dz =

∫ 2π

0

a eit(iaeit)dt = ia2

∫ 2π

0

ei2t dt =
a2

2
ei2t
∣∣∣∣2π
0

=
a2

2

(
ei4π − ei0

)
= 0

(2.6)
As expected, the integral is zero.

Now, consider the function f(z) = 1
z
. It is analytic everywhere except the origin z = 0.

Since the region bounded by C, the unit disk, includes the origin, the Cauchy-Goursat
theorem doesn’t apply, and the integral need not be zero. Let’s check:

	
∫
C
f(z) dz = 	

∫
C

dz

z
=

∫ 2π

0

iaeit

a eit
dt = ia2

∫ 2π

0

dt = 2πi (2.7)

Notice two things:

• Even though f(z) is analytic (not just differentiable) all along the curve C, the Cauchy-
Goursat theorem does not apply because f(z) is not analytic at all points in the region
R bounded by C. And in fact 	

∫
C f(z) dz 6= 0

• The integral 	
∫
C f(z) dz doesn’t depend on the radius of the curve C.

2.2 Independence of Path for Analytic Functions

Now to the second big consequence of the Cauchy-Goursat theorem, concerning the deforma-
tion of contours. Suppose C1 and C2 are two different curves that connect the same endpoints
zI and zF . Then if we make the closed curve C by following C1 from zI and zF , then following
C2 backwards from zF back to zI , we have

	
∫
C
f(z) dz =

∫
C1
f(z) dz −

∫
C2
f(z) dz (2.8)

where the contribution from integrating backwards from zF to zI is minus the integral∫
C2 f(z) dz which results from integrating forwards along C2 from zI to zF . This means

that if f(z) is analytic everywhere in the region between C1 and C2, which is the
region of which C is the boundary, then the integral around the closed loop is zero by the
Cauchy-Goursat theorem, and

0 =

∫
C1
f(z) dz −

∫
C2
f(z) dz (2.9)
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i.e. ∫
C1
f(z) dz =

∫
C2
f(z) dz (2.10)

This is a very handy result. It means that for analytic functions we can “deform” a
potentially inconvenient contour into one along which it’s easier to calculate the integral.

Example: Evaluate ∫
C

cos z dz (2.11)

where C is the curve y = sinx from zI = 0 to zF = π
2

+ i.
Solution: Since cos z is analytic everywhere, we can evaluate the integral along any curve

from zI = 0 to zF = π
2

+ i. In particular, consider the curve C0 which goes along the
real axis from 0 to π

2
, and then straight up in the imaginary direction from π

2
to π

2
+ i.

The first piece is parametrized by x from 0 to π
2

with z(x) = x and dz = dx; the second
piece is parametrized by y from 0 to 1 with z = π

2
+ iy and dz = i dy, so, recalling that

cos(x+ iy) = cos x cosh y − i sinx sinh y∫
C

cos z dz =

∫
C0

cos z dz

=

∫ π/2

0

(cosx cosh 0− i sinx sinh 0) dx+

∫ 1

0

(
cos

π

2
cosh y − i sin

π

2
sinh y

)
(i dy)

=

∫ π/2

0

cosx dx+

∫ 1

0

sinh y dy = sinx
∣∣x=π/2

x=0
+ cosh y

∣∣y=1

y=0

= (1− 0) + ([cosh 1]− 1) = cosh 1 =
e− 4 + e−1

2
≈ 1.5431 (2.12)

2.3 Deformation of Closed Contours

We saw that the integral 	
∫
C f(z) dz was not necessarily zero, even if f(z) was analytic all

along C, if there were one or more points in the region bounded by C where f(z) was not
analytic. We’ll now show that in a case like that, you can still deform C without changing
the value of the integral, i.e.,

	
∫
C1
f(z) dz = 	

∫
C2
f(z) dz (2.13)

as long as you can smoothly deform C1 into C2 while staying inside the region where f(z) is
analytic. The idea is to construct a closed contour which goes like this:

1. Counter-clockwise around C1 from some point P1 back to that same point

2. From P1 to a point P2 on C2, along some curve A

3. Clockwise (i.e., backwards) around C2 from P2 back to P2

4. From P2 back to P1, following A backwards (we can call this the curve −A)
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The integral around this curve C is the sum of the contributions from each piece:

	
∫
C
f(z) dz = 	

∫
C1
f(z) dz +

∫
A
f(z) dz + �

∫
C2
f(z) dz +

∫
−A

f(z) dz

= 	
∫
C1
f(z) dz +

∫
A
f(z) dz − 	

∫
C2
f(z) dz −

∫
A
f(z) dz

(2.14)

Since the two integrals along A in the opposite direction cancel out, we’re left with

	
∫
C
f(z) dz = 	

∫
C1
f(z) dz − 	

∫
C2
f(z) dz (2.15)

If f(z) is analytic in the region between C1 and C2, which is just the region inside the closed
contour C, then 	

∫
C f(z) dz is zero, and

	
∫
C1
f(z) dz = 	

∫
C2
f(z) dz (2.16)

So this idea of path independence works for closed curves as well.
The overall theme is that you can deform the contour around which a contour integral

is evaluated, without changing the result of the integral, as long as you don’t change the
endpoints of the curve, or the overall direction for a closed curve, and you only move the
curve through regions where the function is analytic.

2.4 The Antiderivative

In real single-variable calculus we can think of the derivative in two ways. The indefinite
integral is the operation that undoes the derivative:

F (x) = f ′(x)⇐⇒ F (x) =

∫
f(x) dx (2.17)

while the definite integral is the area under the function between two points x1 and x2:∫ x2

x1

f(x) dx = F (x2)− F (x1) (2.18)

To evaluate the definite integral of f(x), we only need to know the antiderivative F (x)
evaluated at the two endpoints.

For general complex functions, we only really have the equivalent of the definite integral.
The contour integral ∫

C
f(z) dz (2.19)

doesn’t just depend on the endpoints of the curve C, but it is a property of the curve itself.
However, if a function is analytic in some domain (simply connected open set) D, then we
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know that the contour integral of that function along any curve in D depends only on the
endpoints of the curve. It is thus reasonable to write∫ zF

zI

f(z) dz =

∫
C
f(z) dz C any curve in D from zI to zF ; f(z) analytic in D (2.20)

This then allows us to talk about an antiderivative F (z) such that f(z) = F ′(z) everywhere
in D, and write ∫ zF

zI

f(z) dz = F (zI)− F (zF ) (2.21)

For example, let f(z) = cos 2z; then F (z) = sin 2z
2

, and∫ π
2
−i

π
4

cos 2z dz =
sin(π − 2i)

2
− sin(π/2)

2
(2.22)

Since
sin(x+ iy) = sinx cosh y + i cosx sinh y (2.23)

we know
sin(π − 2i) = i(cos π) sinh(−2) = i(−1)(− sinh 2) = i sinh 2 (2.24)

and of course sin(π/2) = 1 so∫ π
2
−i

π
4

cos 2z dz =
i sinh 2

2
− 1

2
= −1

2
+ i

e− e−1

4
≈ −0.5 + 1.8134i (2.25)

Practice Problems

18.2.9, 18.2.11, 18.2.15, 18.2.21, 18.3.1, 18.3.7, 18.3.15, 18.3.17, 18.3.19

Tuesday 4 October 2011

Review for exam

Thursday 6 October 2011

First Prelim Exam

Tuesday 11 October 2011

3 Cauchy’s Integral Formulas

We can use the Cauchy-Goursat theorem, and the ability to deform closed contours, to
deduce some remarkable properties of analytic functions, which will form the basis for all
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of the considerations of complex power series to come in the following weeks. In particular,
an analytic function will be seen to be infinitely differentiable, and the function and each of
its derivatives at a point will determine the value of various integrals along contours around
that point.

To start with, consider the contour integral

	
∫
C

f(z)

z − z0

dz (3.1)

where C is any curve which goes counter-clockwise around z0, and f(z) is a function which is

analytic in some domain D which completely contains the curve C. Now, the function f(z)
z−z0

is not necessarily analytic at z0, but by the quotient rule, it’s differentiable everywhere else
that f(z) is. That means that it’s analytic on a region which consists of D with the point
z0 removed. So we don’t change the value of the integral if we deform C into a circle Cρ(z0)
of radius ρ centered on z0, as long as ρ is small enough that Cρ(z0) lies completely within D:

	
∫
C

f(z)

z − z0

dz = 	
∫
Cρ(z0)

f(z)

z − z0

dz (3.2)

Now, we can make ρ as small as we like (as long as it remains positive, so to as good an
approximation as we like, we can replace the f(z) in the integrand with the constant f(z0):

f(z)

z − z0

≈ f(z0)

z − z0

=⇒ 	
∫
Cρ(z0)

f(z)

z − z0

dz = 	
∫
Cρ(z0)

f(z0)

z − z0

dz (3.3)

and then, since f(z0) is a constant, we can take it outside the integral, and get

	
∫
Cρ(z0)

f(z0)

z − z0

= f(z0)	
∫
Cρ(z0)

dz

z − z0

(3.4)

We can evaluate the contour integral using the parametrization z = z0 + ρeit, dz = iρeit dt
and find

	
∫
Cρ(z0)

dz

z − z0

=

∫ 2π

0

iρeit dt

ρeit
= 2πi (3.5)

which means that

	
∫
C

f(z)

z − z0

dz = 	
∫
Cρ(z0)

f(z0)

z − z0

dz = 2πif(z0) (3.6)

Strictly speaking, to show this we need to show that

	
∫
Cρ(z0)

f(z)− f(z0)

z − z0

dz = 0 (3.7)

which is done formally in Zill and Wright by showing that∣∣∣∣∣	
∫
Cρ(z0)

f(z)− f(z0)

z − z0

dz

∣∣∣∣∣ (3.8)

11



is smaller than any positive number you choose, using the ML limit.
Example: integrate

	
∫
C

ez

z + i
dz (3.9)

where C is a counter-clockwise circle of radius 2 centered on the origin.

3.1 Cauchy’s Integral Formula for Derivatives

The formula

f(z0) =
1

2πi
	
∫
C

f(z)

z − z0

dz (3.10)

is the n = 0 case of a general formula for the nth derivative of f (n)(z) evaluted at z = z0:

f (n)(z0) =
n!

2πi
	
∫
C

f(z)

(z − z0)n+1
dz valid for any non-negative integer n (3.11)

Note that if we knew f(z) could be described by a Taylor series

f(z) =
∞∑
k=0

f (k)(z0)

k!
(z − z0)k (3.12)

then it would be trivial to show

n!

2πi
	
∫
C

f(z)

(z − z0)n+1
dz =

n!

2πi

∞∑
k=0

f (k)(z0)

k!
	
∫
C
(z − z0)k−n−1 dz = f (k)(z0) (3.13)

because it’s easy to show by deformation of contours that

	
∫
C
(z − z0)k−n−1 dz =

{
0 k 6= n

2πi k = n
(3.14)

However, this would be completely cheating, because the formula (3.10) will be used to show
that an analytic function is infinitely differentiable, and also that is equal to its Taylor series.

So instead, to avoid circular logic, there’s a proof by induction, where the integral formula
for f ′(z0) can be derived using the formula for f(z0), then the formula for f ′′(z0) can be
derived using the formula for f ′(z0), etc. The fundamentals of the method go like this: if
we’ve already shown that

f (n)(z0) =
n!

2πi
	
∫
C

f(z)

(z − z0)n+1
dz (3.15)

for some n, we can write

f (n+1)(z0) = lim
∆z→0

f (n)(z0 + ∆z)− f (n)(z0)

∆z

= lim
∆z→0

1

∆z

(
n!

2πi
	
∫
C

f(z)

(z − z0 −∆z)n+1
dz − n!

2πi
	
∫
C

f(z)

(z − z0)n+1
dz

)
= lim

∆z→0

(
n!

2πi
	
∫
C
f(z)

(z − z0 −∆z)−(n+1) − (z − z0)−(n+1)

∆z
dz

) (3.16)
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where C is some curve that lies within the domain where f(z) is analytic, and goes coun-
terclockwise around both z0 and z0 + ∆z. We can show, for example using l’Hôpital’s rule,
that

lim
∆z→0

(z − z0 −∆z)−(n+1) − (z − z0)−(n+1)

∆z
= (n+ 1)(z − z0)−(n+2) (3.17)

and so

f (n+1)(z0) =
n!(n+ 1)

2πi
	
∫
C

f(z)

(z − z0)n+2
dz =

(n+ 1)!

2πi
	
∫
C

f(z)

(z − z0)n+2
dz (3.18)

which is indeed the Cauchy integral formula for f (n+1)(z0).
Example: Zill & Wright problem 18.4.23.
As noted a moment ago, Cauchy’s integral formula for derivatives shows that if a function

f(z) is analytic at a point, we can construct any derivative we like by defining a contour
integral on a contour which winds counterclockwise around that point. This means that if a
function is analytic (which required that it be differentiable in some neighborhood containing
that point, and that the relevant first derivatives be continous in that neighborhood), it’s
actually infinitely differentiable. This is definitely not the case for real functions. Consider
for example the function

f(x) =

{
x2

2
x ≤ 0

1− cosx x ≥ 0
(3.19)

For this function f(x) and f ′(x) are continuous at the origin, as are f ′′(x) and f (3)(x), but
f (4)(x) is discontinuous at the origin, and f (4)(0) is not defined.

3.2 Consequences of Cauchy’s Integral Formulas

3.2.1 Cauchy’s Inequality

If an analytic function is bounded along a circle Cρ(z0) of radius ρ of radius ρ centered on a
point z0

|f(z)| ≤M when |z − z0| = ρ (3.20)

we can use Cauchy’s Integral Formulas together with the ML bound to set a bound on the
derivatives of f(z) at any point z0 inside C. Specifically,

|fn(z0)| =

∣∣∣∣∣= n!

2πi
	
∫
Cρ(z0)

f(z)

(z − z0)n+1
dz

∣∣∣∣∣ ≤ n!

2π

M

ρn+1
(2πρ) =

n!M

ρn
(3.21)

3.2.2 Liouville’s Theorem

Cauchy’s inequality seems sort of academic, but it can be used to demonstrate something
more surprising: any function which is analytic everywhere (which we call an entire function),
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and also bounded everywhere, is a constant. We can do this by using Cauchy’s inequality
with n = 1 to show the derivative at a point z0 obeys the inequality

|f ′(z0)| ≤
maxCρ(z0) |f(z)|

ρ
≤ max |f(z)|

ρ
(3.22)

but if the function is analytic everywhere, we can make ρ arbitrarily large, and the right-hand
side arbitrarily small. That means |f ′(z0)| must be zero, which means f ′(z0) must be zero.
But we can do this at any point, so f ′(z) = 0 everywhere and therefore f(z) is a constant.

Note that no such restriction exists for real functions: f(x) = 1
1+x2

is infinitely differen-
tiable for every real x, and obeys |f(x)| ≤ 1 for every real x.

Practice Problems

18.4.1, 18.4.3, 18.4.7, 18.4.9, 18.4.15, 18.4.17, 18.4.19, 18.4.21, 18.4.23
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