Conformal Mappings (Zill \& Wright Chapter 20)

Contents

1 Motivation

2 Complex Functions as Mappings
Fall 20111
3 Conformal Mappings 4
3.1 Conditions for Conformality 4
3.2 Application to Dirichlet Problems 5
4 Geometric Applications of Analytic Functions 6
4.1 Potential for a Vector Field 6
4.2 Sample Application 7

Tuesday 1 November 2011

1 Motivation

We turn now from contour integration back to some ideas we first touched on when we introduced complex functions, specifically:

- A complex function $w=f(z)$ can be thought of as a mapping from the $z=x+i y$ plane with coördinates (x, y) to the $w=u+i v$ plane with coördinates (u, v).
- If $\varphi(x, y)+i \psi(x, y)$ is analytic, then the real functions $\varphi(x, y)$ and $\psi(x, y)$ are harmonic, i.e., each obeys the Laplace equation

$$
\begin{equation*}
\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}=0 \tag{1.1}
\end{equation*}
$$

The main application of this will be in converting the Laplace equation with boundary conditions on an awkward region in the (x, y) plane to one on a more convenient region in the (u, v) plane. I.e., if we have a harmonic function $U(u, v)$ which is part of an analytic function

$$
\begin{equation*}
W=F(w)=U(u, v)+i V(u, v) \tag{1.2}
\end{equation*}
$$

on some convenient region in the w plane and $w=f(z)=u(x, y)+i v(x, y)$ is an analytic function which maps the region of interest in the (x, y) plane onto the convenient region in

[^0]the (u, v) plane, then the chain rule tells us that $F(f(z))$ is an analytic function of z; that means if we write
\[

$$
\begin{equation*}
\varphi(x, y)+i \psi(x, y):=F(f(z))=U(u(x, y), v(x, y))+i V(u(x, y), v(x, y)) \tag{1.3}
\end{equation*}
$$

\]

then we can see that

$$
\begin{equation*}
\varphi(x, y)=U(u(x, y), v(x, y)) \tag{1.4}
\end{equation*}
$$

is a harmonic function of x and y with boundary conditions on the appropriate region.

2 Complex Functions as Mappings

Recall that when we first introduced complex functions, we proposed the idea of mapping the z plane, with coördinates $x=\operatorname{Re}(z)$ and $y=\operatorname{Im}(z)$, into the w plane, with coördinates $u=\operatorname{Re}(w)$ and $v=\operatorname{Im}(w)$.

We now want to think about how this mapping affects not just curves, but regions of the (x, y) plane.

Translation: $f(z)=z+b$ where $b=h+i k$; then

$$
\begin{align*}
& u=x+h \tag{2.1a}\\
& v=y+k \tag{2.1b}
\end{align*}
$$

Magnification: $f(z)=\alpha z$ where α is a positive real constant.

Rotation: $f(z)=e^{i \theta_{0}} z$ where θ_{0} is a real constant.

Effect of raising to a power: $f(z)=z^{\alpha}$ scales angles at $z=0$ by a factor of α :

Practice Problems

20.1.1, 20.1.5, 20.1.7, 20.1.11, 20.1.13, 20.1.15, 20.1.21, 20.1.23, 20.1.25, 20.1.29

Thursday 3 November 2011

3 Conformal Mappings

3.1 Conditions for Conformality

Having considered complex functions as mappings from the (x, y) plane to the (u, v) plane, we now turn specifically to conformal mappings. "Conformal" means preserving angles, i.e., if two curves $z_{1}(t)$ and $z_{2}(t)$ intersect (at a point $z_{0}=z_{1}\left(t_{0}\right)=z_{2}\left(t_{0}\right)$) at an angle α in the (x, y) plane, the mapped curves $w_{1}(t)=f\left(z_{1}(t)\right)$ and $w_{2}(t)=f\left(z_{2}(t)\right)$ will intersect (at the point $\left.f\left(z_{0}\right)=w_{1}\left(t_{0}\right)=w_{2}\left(t_{0}\right)\right)$ at the same angle in the (u, v) plane. We can see what conditions on $f(z)$ achieve this by considering the heading of a curve $z(t)$, i.e., what angle its tangent vector makes to a line parallel to the real axis. Since the curve $z(t)=x(t)+i y(t)$ has x coördinate $x(t)$ and y coördinate $y(t)$, its tangent vector is

$$
\begin{equation*}
x^{\prime}(t) \hat{x}+y^{\prime}(t) \hat{y} \tag{3.1}
\end{equation*}
$$

The heading of this vector is

$$
\begin{equation*}
\operatorname{atan} 2\left(y^{\prime}(t), x^{\prime}(t)\right)=\operatorname{Arg} z^{\prime}(t) \tag{3.2}
\end{equation*}
$$

so the angle at which the curves $z_{1}(t)$ and $z_{2}(t)$ intersect is the difference of their headings,

$$
\begin{equation*}
\alpha=\arg z_{2}^{\prime}\left(t_{0}\right)-\arg z_{1}^{\prime}\left(t_{0}\right) \tag{3.3}
\end{equation*}
$$

where we have written arg rather than the principal value Arg because adding multiples of 2π to won't change its physical meaning.

Likewise, heading of the curve $w(t)=f(z(t))$ is $\operatorname{Arg} w^{\prime}(t)$. The chain rule tells us that

$$
\begin{equation*}
w^{\prime}(t)=f^{\prime}(z(t)) z^{\prime}(t) \tag{3.4}
\end{equation*}
$$

so the heading is

$$
\begin{equation*}
\arg w^{\prime}(t)=\arg f^{\prime}(z(t))+\arg z^{\prime}(t) \tag{3.5}
\end{equation*}
$$

where we have used the fact that

$$
\begin{equation*}
\arg \left(z_{1} z_{2}\right)=\arg z_{1}+\arg z_{2} \tag{3.6}
\end{equation*}
$$

This means that the headings of the two curves $w_{1}(t)$ and $w_{2}(t)$ at the point of intersection are

$$
\begin{align*}
& \arg w_{1}^{\prime}\left(t_{0}\right)=\arg f^{\prime}\left(z_{0}\right)+\arg z_{1}^{\prime}\left(t_{0}\right) \tag{3.7a}\\
& \arg w_{2}^{\prime}\left(t_{0}\right)=\arg f^{\prime}\left(z_{0}\right)+\arg z_{2}^{\prime}\left(t_{0}\right) \tag{3.7b}
\end{align*}
$$

which means the angle between them is

$$
\begin{equation*}
\arg w_{2}^{\prime}\left(t_{0}\right)-\arg w_{1}^{\prime}\left(t_{0}\right)=\arg z_{2}^{\prime}\left(t_{0}\right)-\arg z_{1}^{\prime}\left(t_{0}\right) \tag{3.8}
\end{equation*}
$$

This demonstration works as long as $\arg f^{\prime}\left(z_{0}\right)$ is well defined. So the function $f(z)$ has to be analytic (so that $f^{\prime}(z)$ exists along the curves), but also $f^{\prime}\left(z_{0}\right)$ must be non-zero, because $\arg 0$ is undefined. I.e.,

$$
\begin{equation*}
f(z) \text { defines a conformal mapping wherever } f(z) \text { is analytic and } f^{\prime}(z) \neq 0 \tag{3.9}
\end{equation*}
$$

Note that this was the case with our example of $f(z)=z^{2}$ on Tuesday. Since $f^{\prime}(z)=2 z$ which is zero only at $z=0$, the mapping is conformal except at $z=0$. We saw this, as the right angles at the corners of the square remained right angles, except for the one at the origin.

3.2 Application to Dirichlet Problems

Example 20.2.19.

4 Geometric Applications of Analytic Functions

4.1 Potential for a Vector Field

Recall that when we first defined a complex function

$$
\begin{equation*}
f(z)=f(x+i y)=u(x, y)+i v(x, y) \tag{4.1}
\end{equation*}
$$

we deduced the Cauchy-Riemann equations from

$$
\begin{equation*}
f^{\prime}(z)=\frac{\partial}{\partial x} f(x+i y)=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{1}{i} \frac{\partial}{\partial y} f(x+i y)=\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y} \tag{4.2}
\end{equation*}
$$

We also saw that the Cauchy-Riemann equations meant that the Pólya vector field

$$
\begin{equation*}
\vec{H}=u(x, y) \hat{x}-v(x, y) \hat{y} \tag{4.3}
\end{equation*}
$$

had zero divergence and zero curl:

$$
\begin{align*}
\operatorname{div} \vec{H} & =\frac{\partial H_{x}}{\partial x}+\frac{\partial H_{y}}{\partial y}=\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}=0 \tag{4.4a}\\
\operatorname{curl} \vec{H} & =\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}=-\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=0 \tag{4.4b}
\end{align*}
$$

Another fact from vector calculus is that any vector field with zero curl can be written as a gradient of some scalar field, i.e., there should be a $\varphi(x, y)$ such that

$$
\begin{equation*}
\vec{H}=\tilde{\nabla} \varphi=\frac{\partial \varphi}{\partial x} \hat{x}+\frac{\partial \varphi}{\partial y} \hat{y} \tag{4.5}
\end{equation*}
$$

We can construct this field by starting with the analytic function $f(z)$. Since it is analytic, we can construct an antiderivative $F(z)$ such that $f(z)=F^{\prime}(z)$. Write the real and imaginary parts of the antiderivative as

$$
\begin{equation*}
F(z)=F(x+i y)=\varphi(x, y)+i \psi(x, y) \tag{4.6}
\end{equation*}
$$

We note that we can write the derivative as

$$
\begin{equation*}
F^{\prime}(z)=\frac{\partial}{\partial x} F(x+i y)=\frac{\partial \varphi}{\partial x}+i \frac{\partial \psi}{\partial x}=\frac{1}{i} \frac{\partial}{\partial y} F(x+i y)=\frac{\partial \psi}{\partial y}-i \frac{\partial \varphi}{\partial y} \tag{4.7}
\end{equation*}
$$

The Cauchy-Riemann equations applied to $F(z)$ are

$$
\begin{align*}
\frac{\partial \varphi}{\partial x} & =\frac{\partial \psi}{\partial y} \tag{4.8a}\\
\frac{\partial \psi}{\partial x} & =-\frac{\partial \varphi}{\partial y} \tag{4.8b}
\end{align*}
$$

so we can also write

$$
\begin{equation*}
f(z)=F^{\prime}(z)=\frac{\partial \varphi}{\partial x}-i \frac{\partial \varphi}{\partial y} \tag{4.9}
\end{equation*}
$$

That makes the Pólya vector field for $f(z)$

$$
\begin{equation*}
\vec{H}=\frac{\partial \varphi}{\partial x} \hat{x}+\frac{\partial \varphi}{\partial y} \hat{y}=\tilde{\nabla} \varphi \tag{4.10}
\end{equation*}
$$

The scalar field φ, which is harmonic, is called the potential for the Pólya vector field \vec{H}.

4.2 Sample Application

Example 20.6.5

Practice Problems

20.2.1, 20.2.3, 20.2.5, 20.2.7, 20.2.9, 20.2.19, 20.2.23, 20.6.1, 20.6.3, 20.6.5

[^0]: *Copyright 2011, John T. Whelan, and all that

