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Tuesday 4 September 2012

0 Administrata

• Syllabus

• Instructor’s name (Whelan) rhymes with “wailin’”.

• Text: Devore, Probability and Statistics for Engineering and the Sciences. The official
version is the 8th edition, but the 7th edition is nearly identical. However, a few of
the problems from the 7th edition have been replaced with different ones in the 8th
edition, so make sure you’re doing the correct homework problems. The 7th edition is
on reserve at the Library.

• Course website: http://ccrg.rit.edu/~whelan/1016-345/

– Contains links to quizzes and exams from previous sections of Probability and
Statistics for Engineers (1016-345) and Probability (1016-351), which had a sim-
ilar curriculum. (The corresponding course calendars will be useful for lining up
the quizzes.)

• Course calendar: tentative timetable for course.

• Structure:

– Read relevant sections of textbook before class

– Lectures to reinforce and complement the textbook

– Practice problems (odd numbers; answers in back but more useful if you try them
before looking!).

– Problem sets to hand in: practice at writing up your own work neatly & coherently.
Note: doing the problems is very important step in mastering the material.

– Quizzes: closed book, closed notes, use scientific calculator (not graphing calcu-
lator, not your phone!)

– Prelim exam (think midterm, but there are two of them) in class at end of each half
of course: closed book, one handwritten formula sheet, use scientific calculator
(not your phone!)

– Final exam to cover both halves of course

• Grading:

5% Problem Sets

10% Quizzes

25% First Prelim Exam

25% Second Prelim Exam

35% Final Exam

You’ll get a separate grade on the “quality point” scale (e.g., 2.5–3.5 is the B range)
for each of these five components; course grade is weighted average.
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0.1 Outline

Part One (Probability):

1. Probability (Chapter Two)

2. Discrete Random Variables (Chapter Three)

3. Continuous Random Variables (Chapter Four)

Part Two (Statistics):

1. Descriptive Statistics (Chapter One)

2. Probability Plots (Section 4.6)

3. Joint Probability Distributions & Random Samples (Chapter Five)

4. Interval Estimation (Chapter Seven)

Warning: this class will move pretty fast, and in particular we’ll rely on your knowledge
of calculus.

1 Axiomatic Probability

Many of the rules of probability appear to be self-evident, but it’s useful to have a precise
language in which they can be described. To that end, Devore develops with some care a
mathematical theory of probability. We’ll mostly summarize the key definitions and results
here.

1.1 Outcomes and Events

Devore defines probability in terms of an experiment which can have one of a set of possible
outcomes.

• The sample space of an experiment, written S, is the set of all possible outcomes.

• An event is a subset of S, a set of possible outcomes to the experiment. Special cases
are:

– The null event ∅ is an event consisting of no outcomes (the empty set)

– A simple event consists of exactly one outcome

– A compound event consists of more than one outcome

The sample space S itself an event, of course.
One example of an experiment is flipping a coin three times. The outcomes in that case

are HHH, HHT , HTH, HTT , THH, THT , TTH, and TTT . Possible events include:

• Exactly two heads: {HHT,HTH, THH}
• The first flip is heads: {HHH,HHT,HTH,HTT}
• The second and third flips are the same: {HHH,HTT, THH, TTT}
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Another example is a game of craps, in which:

• if a 2, 3 or 12 is rolled on the first roll, the shooter loses

• if a 7 or 11 is rolled on the first roll, the shooter wins

• if a 4, 5, 6, 8, 9, or 10 is rolled on the first roll, the dice are rolled again until the either
that number or a 7 comes up, in which case the shooter wins or loses, respectively.

In this case there are an infinite number of outcomes in S, some of which are: 2, 3, 7,
11, 12, 4|4, 4|7, 5|5, 5|7, 6|6, 6|7, 8|8, 8|7, 9|9, 9|7, 10|10, 10|7, 4|2|4, 4|3|4, 4|5|4, 4|6|4,
. . . . Possible events include: the shooter wins {7, 11, 4|4, 5|5, 6|6, 8|8, . . .}; the shooter loses
{2, 3, 12, 4|7, . . .}; the dice are thrown exactly once {2, 3, 7, 11, 12}, etc.

Since an event is a set of outcomes, we can use all of the machinery of set theory,
specifically:

• The complement A′ (“not A”) of an event A, is the set of all outcomes in S which
are not in A.

• The union A ∪B (“A or B”) of two events A and B, is the set of all outcomes which
are in A or B, including those which are in both.

• The intersection A ∩ B (“A and B”) is the set of all outcomes which are in both A
and B.

In the case of coin flips, if the events are A = {HHT,HTH, THH} (exactly two heads)
and B = {HHH,HHT,HTH,HTT} (first flip heads), we can construct, among other
things,

A′ = {HHH,HTT, THT, TTH, TTT}
A ∪B = {HHH,HHT,HTH,HTT, THH}

A ∩B = {HHT,HTH}

Another useful definition is that A and B are disjoint or mutually exclusive events if
A ∩B = ∅.

Note that the trickiest part of many problems is actually keeping straight
what the events are to which you’re assigning probabilities!

1.2 Rules of Probability

Having formally defined what we mean by an event, we can proceed to define the probability
of that event, which we think of as the chance that it will occur. Devore starts with three
axioms

1. For any event A, P (A) ≥ 0

2. P (S) = 1
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3. Given an infinite collection A1, A2, A3, . . . of disjoint events,

P (A1 ∪ A2 ∪ A3 ∪ · · · ) = P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai) (1.1)

From there he manages to derive a bunch of other sensible results, such as

1. For any event A, P (A) ≤ 1

2. P (∅) = 0

3. P (A′) = 1− P (A)

One useful result concerns the probability of the union of any two events. Since A∪B =
(A ∩B′) ∪ (A ∩B) ∪ (A′ ∩B), the union of three disjoint events,

P (A ∪B) = P (A ∩B′) + P (A ∩B) + P (A′ ∩B) (1.2)

On the other hand, A = (A ∩B′) ∪ (A ∩B) and B = (A ∩B) ∪ (A′ ∩B), so

P (A) = P (A ∩B′) + P (A ∩B) (1.3a)

P (B) = P (A ∩B) + P (A′ ∩B) (1.3b)

which means that

P (A) + P (B) = P (A ∩B′) + 2P (A ∩B) + P (A′ ∩B) = P (A ∪B) + P (A ∩B) (1.4)

so
P (A ∪B) = P (A) + P (B)− P (A ∩B) (1.5)
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1.3 Venn Diagrams

“University Website” http://xkcd.com/773/

Note that this is a Venn diagram illustrating the relationship between two sets of “things”
rather than two sets of outcomes

6



We can often gain insight into addition of probabilities with Venn diagrams, in which
events are represented pictorially as regions in a plane. For example, here the two overlapping
circles represent the events A and B:

The intersection of those two events is shaded here:
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The union the two events is shaded here:

Thus we see that if we add P (A) and P (B) by counting all of the outcomes in each circle,
we’ve double-counted the outcomes in the overlap, which is why we have to subtract P (A∩B)
in (1.5)

It’s sometimes useful to keep track of the probabilities of various intersections of events
by writing those probabilities in a Venn diagram like this:
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1.3.1 Example

Suppose we’re told that P (A) = .5, P (B) = .6, and P (A ∩ B) = .4 and asked to calculate
something like P (A ∪ B). We could just use the formula, of course, or we could fill in the
probabilities on a Venn diagram. Since P (A∩B) = .4, we must have P (A∩B′) = .1 in order
that the two will add up to P (A) = .5, and likewise we can deduce that P (A′ ∩B) = .2 and
fill in the probabilities like so:

Note that the four regions of the Venn diagram represent an exhaustive set of mutually
exclusive events, so their probabilities have to add up to 1.

1.4 Assigning Probabilities

The axioms of probability let us relate the probabilities of different events, but they don’t
tell us what those probabilities should be in the first place. There are a several different ways
to interpret what the probabilities mean. The conventional one is to imagine that we repeat
the same experiment over and over again many times under identical conditions. In each
iteration of the experiment (each game of craps, sequence of coin flips, opinion survey, etc),
a given outcome or event will represent a statement that is either true or false. Over the
long run, the fraction of experiments in which the statement is true will be approximately
given by the probability of the corresponding outcome or event. If we write the number of
repetitions of the experiment as N , and the number of experiments out of those N in which
A is true as NA(N), then

lim
N→∞

NA(N)

N
= P (A) (1.6)
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You can test this proposition on the optional numerical exercise on this week’s problem
set. This interpretation of probability is sometimes called the “frequentist” interpretation,
since it involves the relative frequency of outcomes in repeated experiements. It’s actually
a somewhat more limited interpretation than the “Bayesian” interpretation, in which the
probability of an event corresponds to a quantitative degree of certainty that the correspond-
ing statement is true. (Devore somewhat pejoratively calls this “subjective probability”.)
These finer points are beyond the scope of this course, but if you’re interested, you may want
to look up e.g., Probability Theory: The Logic of Science by E. T. Jaynes.

If we have a way of assigning probabilities to each outcome, and therefore each simple
event, then we can use the sum rule for disjoint events to write the probability of any event
as the sum of the probabilities of the simple events which make it up. I.e.,

P (A) =
∑

Ei in A

P (Ei) (1.7)

One possibility is that each outcome, i.e., each simple event, might be equally likely.
In that case, if there are N outcomes total, the probability of each of the simple events is
P (Ei) = 1/N (so that

∑N
i=1 P (Ei) = P (S) = 1), and in that case

P (A) =
∑

Ei in A

1

N
=

N(A)

N
(1.8)

where N(A) is the number of outcomes which make up the event A.
Note, however, that one has to consider whether it’s appropriate to take all of the out-

comes to be equally likely. For instance, in our craps example, we considered each roll, e.g.,
2 and 4 to be its own outcome. But you can also consider the rolls of the individual dice, and
then the two dice totalling 4 would be a composite event consisting of the outcomes (1, 3),
(2, 2), and (3, 1). For a pair of fair dice, the 36 possible outcomes defined by the numbers on
the two dice taken in order (suppose one die is green and the other red) are equally likely
outcomes.

2 Counting Techniques

2.1 Ordered Sequences

We can come up with 36 as the number of possible results on a pair of fair dice in a couple
of ways. We could make a table
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1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

which is also useful for counting the number of occurrences of each total. Or we could use
something called a tree diagram:

This works well for counting a small number of possible outcomes, but already with 36
outcomes it is becoming unwieldy. So instead of literally counting the possible outcomes, we
should calculate how many there will be. In this case, where the outcome is an ordered pair
of numbers from 1 to 6, there are 6 possibilities for the first number, and corresponding to
each of those there are 6 possibilities for the second number. So the total is 6× 6 = 36.

More generally, if we have an ordered set of k objects, with n1 possibilities for the first,
n2 for the second, etc, the number of possible ordered k-tuples is n1n2 . . . nk, which we can
also write as

k∏
i=1

ni . (2.1)
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2.2 Permutations and Combinations

Consider the probability of getting a poker hand (5 cards out of the 52-card deck) which
consists entirely of hearts.1 Since there are four different suits, you might think the odds are
(1/4)(1/4)(1/4)(1/4)(1/4) = (1/4)5 = 1/45. However, once a heart has been drawn on the
first card, there are only 12 hearts left in the deck out of 51; after two hearts there are 11
out of 50, etc., so the actual odds are

P (♥♥♥♥♥) =

(
13

52

)(
12

51

)(
11

50

)(
10

49

)(
9

48

)
(2.2)

This turns out not to be the most effective way to calculate the odds of poker hands,
though. (For instance, it’s basically impossible to do a card-by-card accounting of the
probability of getting a full house.) Instead we’d like to take the approach of counting
the total number of possible five-card hands (outcomes) and then counting up how many fall
into a particular category (event). The terms for the quantities we will be interested in are
permutation and combination.

First, let’s consider the number of possible sequences of five cards drawn out of a deck
of 52. This is the permutation number of permutations of 5 objects out of 52, called P5,52.
The first card can be any of the 52; the second can be any of the remaining 51; the third
can be any of the remaining 50, etc. The number of permutations is

P5,52 = 52× 51× 50× 49× 48 (2.3)

In general

Pk,n = n(n− 1)(n− 2) · · · (n− k + 1) =
k−1∏
`=0

(n− `) . (2.4)

Now, there is a handy way to write this in terms of the factorial function. Remember that
the factorial is defined as

n! = n(n− 1)(n− 1) · · · (2)(1) =
n∏

`=1

` (2.5)

with the special case that 0! = 1. Then we can see that

n!

(n− k)!
=

n(n− 1)(n− 2) · · · (n− k + 1)����(n− k)������
(n− k − 1) · · ·��(2)��(1)

����(n− k)������
(n− k − 1) · · ·��(2)��(1)

= Pk,n

(2.6)

Note in particular that the number of ways of arranging n items is

Pn,n =
n!

(n− n)!
=

n!

0!
= n! (2.7)

1This is, hopefully self-apparently, one-quarter of the probability of getting a flush of any kind.
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Now, when we think about the number of different poker hands, actually we don’t consider
the cards in a hand to be ordered. So in fact all we care about is the number of ways of
choosing 5 objects out of a set of 52, without regard to order. This is the number of
combinations, which is sometimes written C5,52, but which we’ll write as

(
52
5

)
, pronounced

“52 choose 5”. When we counted the number of different permutations of 5 cards out of
52, we actually counted each possible hand a bunch of times, once for each of the ways of
arranging the cards. There are P5,5 = 5! different ways of arranging the five cards of a poker
hand, so the number of permutations of 5 cards out of 52 is the number of combinations
times the number of permutations of the 5 cards among themselves:

P5,52 =

(
52

5

)
P5,5 (2.8)

The factor of P5,5 = 5! is the factor by which we overcounted, so we divide by it to get(
52

5

)
=

P5,52

P5,5

=
52!

47!5!
= 2598960 (2.9)

or in general (
n

k

)
=

n!

(n− k)!k!
(2.10)

So to return to the question of the odds of getting five hearts, there are
(
52
5

)
different

poker hands, and
(
13
5

)
different hands of all hearts (since there are 13 hearts in the deck),

which means the probability of the event A = ♥♥♥♥♥ is

P (A) =
N(A)

N
=

(
13
5

)(
52
5

) =
13!
8!5!
52!
47!5!

=
13!47!

8!52!
=

(13)(12)(11)(10)(9)

(52)(51)(50)(49)(48)
(2.11)

which is of course what we calculated before. Numerically, P (A) ≈ 4.95 × 10−4, while
1/45 ≈ 9.77× 10−4. The odds of getting any flush are four times the odds of getting an all
heart flush, i.e., 1.98× 10−3.

Actually, if we want to calculate the odds of getting a flush, we have over-counted some-
what, since we have also included straight flushes, e.g., 4♥-5♥-6♥-7♥-8♥. If we want to
count only hands which are flushes, we need to subtract those. Since aces can count as
either high or low, there are ten different all-heart straight flushes, which means the number
of different all-heart flushes which are not straight flushes is(

13

5

)
− 10 =

13!

8!5!
− 10 = 1287− 10 = 1277 (2.12)

and the probability of getting an all-heart flush is 4.92× 10−4, or 1.97× 10−3 for any flush.
Exercise: work out the number of possible straights and therefore the odds of getting a

straight.

Practice Problems

2.5, 2.9, 2.13, 2.17, 2.29, 2.33, 2.43
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Thursday 6 September 2012

3 Conditional Probabilities and Tree Diagrams

“Conditional Risk” http://xkcd.com/795/

3.1 Example: Odds of Winning at Craps

Although there are an infinite number of possible outcomes to a craps game, we can still
calculate the probability of winning.

First, the sample space can be divided up into mutually exclusive events based on the
result of the first roll:
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Event Probability Result of game

2, 3 or 12 on 1st roll 1+2+1
36

= 4
36
≈ 11.1% lose

7 or 11 on 1st roll 6+2
36

= 8
36
≈ 22.2% win

4 or 10 on 1st roll 3+3
36

= 6
36
≈ 16.7% ???

5 or 9 on 1st roll 4+4
36

= 8
36
≈ 22.2% ???

6 or 8 on 1st roll 5+5
36

= 10
36
≈ 27.8% ???

The last three events each contain some outcomes that correspond to winning, and some
that correspond to losing. We can figure out the probability of winning if, for example, you
roll a 4 initially. Then you will win if another 4 comes up before a 7, and lose if a 7 comes
up before a 4. On any given roll, a 7 is twice as likely to come up as a 4 (6/36 vs 3/36), so
the odds are 6/9 = 2/3 ≈ 66.7% that you will roll a 7 before a 4 and lose. Thus the odds of
losing after starting with a 4 are 66.7%, while the odds of winning after starting with a 4 are
33.3%. The same calculation applies if you get a 10 on the first roll. This means that the
6/36 ≈ 16.7% probability of rolling a 4 or 10 initially can be divided up into a 4/36 ≈ 11.1%
probability to start with a 4 or 10 and eventually lose, and a 2/36 ≈ 5.6% probability to
start with a 4 or 10 and eventually win.

We can summarize this branching of probabilities with a tree diagram:

The probability of winning given that you’ve rolled a 4 or 10 initially is an example of a
conditional probability. If A is the event “roll a 4 or 10 initially” and B is the event “win
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the game”, we write the conditional probability for event B given that A occurs as P (B|A).
We have argued that the probability for both A and B to occur, P (A ∩ B), should be the
probability of A times the conditional probability of B given A, i.e.,

P (A ∩B) = P (B|A)P (A) (3.1)

We can use this to fill out a table of probabilities for different sets of outcomes of a craps
game, analogous to the tree diagram.

A P (A) B P (B|A) P (A ∩B) = P (B|A)P (A)

2, 3 or 12 on 1st roll .111 lose 1 .111
7 or 11 on 1st roll .222 win 1 .222

4 or 10 on 1st roll .167
lose .667 .111
win .333 .056

5 or 9 on 1st roll .222
lose .6 .133
win .4 .089

6 or 8 on 1st roll .278
lose .545 .152
win .455 .126

Since the rows all describe disjoint events whose union is the sample space S, we can add
the probabilities of winning and find that

P (win) ≈ .222 + .056 + .089 + .126 ≈ .493 (3.2)

and
P (lose) ≈ .111 + .111 + .133 + .152 ≈ .507 (3.3)

3.2 Definition of Conditional Probability

We’ve motivated the concept of conditional probability and applied it via (3.1). In fact, from
a formal point of view, conditional probability is defined as

P (B|A) =
P (A ∩B)

P (A)
. (3.4)

We actually used that definition in another context above without realizing it, when we were
calculating the probability of rolling a 7 before rolling a 4. We know that P (7) = 6/36 and
P (4) = 3/36 on any given roll. The probability of rolling a 7 given that the game ends on
that throw is

P (7|7 ∪ 4) =
P (7)

P (7 ∪ 4)
=

P (7)

P (7) + P (4)
=

6/36

9/36
=

6

9
(3.5)

We calculated that using the definition of conditional probability.
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3.3 Independence

We will often say that two events A and B are independent, which means that the probability
of A happening is the same whether or not B happens. This can be stated mathematically
in several equivalent ways:

1. P (A|B) = P (A)

2. P (B|A) = P (B)

3. P (A ∩B) = P (A)P (B)

The first two tie most obviously to the notion of independence (the probability of A given B
is the same as the probability of A), but the third is more convenient. To show that they’re
equivalent, suppose that P (A ∩B) = P (A)P (B). In that case, it’s easy to show

P (A|B) =
P (A ∩B)

P (B)
=

P (A)���P (B)

���P (B)
= P (A) if P (A ∩B) = P (A)P (B) (3.6)

The symmetrical definition also works even if P (A) or P (B) are zero, and it extends obviously
to more than two events:

A, B, and C are mutually independent ≡ P (A ∩B ∩ C) = P (A)P (B)P (C) (3.7)

4 Bayes’s Theorem

Some of the arguments in this section are adapted from
http: // yudkowsky. net/ rational/ bayes

which gives a nice explanation of Bayes’s theorem.
The laws of probability are pretty good at predicting how likely something is to happen

given certain underlying circumstances. But often what you really want to know is the op-
posite: given that some thing happened, what were the circumstances? The classic example
of this is a test for a disease.

Suppose that one one-thousandth of the population has a disease. There is a test that
can detect the disease, but it has a 2% false positive rate (on average one out of fifty healthy
people will test positive) and as 1% false negative rate (on average one out of one hundred
sick people will test negative). The question we ultimately want to answer is: if someone
gets a positive test result, what is the probability that they actually have the disease. Note,
it is not 98%!

4.1 Approach Considering a Hypothetical Population

The standard treatment of Bayes’s Theorem and the Law of Total Probability can be sort
of abstract, so it’s useful to keep track of what’s going on by considering a hypothetical
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population which tracks the various probabilities. So, assume the probabilities arise from
a population of 100,000 individuals. Of those, one one-one-thousandth, or 100, have the
disease. The other 99,900 do not. The 2% false positive rate means that of the 99,900
healthy individuals, 2% of them, or 1,998, will test positive. The other 97,902 will test
negative. The 1% false negative rate means that of the 100 sick individuals, one will test
negative and the other 99 will test positive. So let’s collect this into a table:

Positive Negative Total

Sick 99 1 100
Healthy 1,998 97,902 99,900

Total 2,097 97,903 100,000

(As a reminder, if we choose a sample of 100,000 individuals out of a larger population, we
won’t expect to get exactly this number of results, but the 100,000-member population is a
useful conceptual construct.)

Translating from numbers in this hypothetical population, we can confirm that it captures
the input information:

P (sick) =
100

100, 000
= .001 (4.1a)

P (positive|healthy) =
1, 998

99, 900
= .02 (4.1b)

P (negative|sick) =
1

100
= .01 (4.1c)

But now we can also calculate what we want, the conditional probability of being sick given
a positive result. That is the fraction of the total number of individuals with positive test
results that are in the “sick and positive” category:

P (sick|positive) =
99

2, 097
≈ .04721 (4.2)

or about 4.7%.
Note that we can forego the artificial construct of a 100,000-member hypothetical pop-

ulation. If we divide all the numbers in the table by 100,000, they become probabilities for
the corresponding events. For example,

P (sick ∩ positive) =
99

100, 000
= .00099

That is the approach of the slightly more axiomatic (and general) method described in the
next section.
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4.2 Approach Using Axiomatic Probability

The quantity we’re looking for (the probability of being sick, given a positive test result) is
a conditional probability. To evaluate it, we need to define some events about which we’ll
discuss the probability. First, consider the events

A1 ≡ “individual has the disease” (4.3a)

A2 ≡ “individual does not have the disease” (4.3b)

These make a mutually exclusive, exhaustive set of events, i.e., A1∩A2 = ∅ and A1∩A2 = S.
(We call them A1 and A2 because in a more general case there might be more than two events
in the mutually exclusive, exhaustive set.) We are told in the statement of the problem that
one person in 1000 has the disease, which means that

P (A1) = .001 (4.4a)

P (A2) = 1− P (A1) = .999 (4.4b)

(4.4c)

Now consider the events associated with the test:

B ≡ “individual tests positive” (4.5a)

B′ ≡ “individual tests negative” (4.5b)

(We call them B and B′ because we will focus more on B.) The 2% false positive and 1%
false negative rates tell us

P (B|A2) = .02 (4.6a)

P (B′|A1) = .01 (4.6b)

Note that if we want to talk about probabilities involving B, we should use the fact that

P (B|A1) + P (B′|A1) = 1 (4.7)

to state that
P (B|A1) = 1− P (B′|A1) = .99 (4.8)

Now we can write down the quantity we actually want, using the definition of conditional
probability:

P (A1|B) =
P (A1 ∩B)

P (B)
(4.9)

Now, we don’t actually have an expression for P (A1 ∩ B) or P (B) yet. The fundamental
things we know are

P (A1) = .001 (4.10a)

P (A2) = .999 (4.10b)

P (B|A2) = .02 (4.10c)

P (B|A1) = .99 (4.10d)
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However, we know how to calculate P (A1∩B) and P (B) from the things we do know. First,
to get P (A1 ∩B), we can notice that we know P (B|A1) and P (A1), so we can solve

P (B|A1) =
P (A1 ∩B)

P (A1)
(4.11)

for
P (A1 ∩B) = P (B|A1)P (A1) = (.99)(.001) = .00099 (4.12)

Logically, the probability of having the disease and testing positive for it is the probability
of having the disease in the first place times the probability of testing positive, given that
you have the disease.

Since we know P (B|A2) and P (A2) we can similarly calculate the probability of not
having the disease but testing positive anyway:

P (A2 ∩B) = P (B|A2)P (A2) = (.02)(.999) = .01998 (4.13)

But now we have enough information to calculate P (B), since the overall probability of
testing positive for the disease has to be the probability of having the disease and testing
positive plus the probability of not having the disease and testing positive:

P (B) = P (A1 ∩B) + P (A2 ∩B) = .00099 + .01998 = .02097 (4.14)

This is an application of the Law of total probability, which says, in the more general case of
k mutually exclusive, exhaustive events A1, . . . , Ak,

P (B) = P (B ∩ A1) + · · ·+ P (B ∩ Ak) = P (B|A1)P (A1) + · · ·+ P (B|Ak)P (Ak) (4.15)

Now we are ready to calculate

P (A1|B) =
P (A1 ∩B)

P (B)
=

.0099

.02097
≈ .04721 (4.16)

So only about 4.7% of people who test positive have the disease. It’s a lot more than one in
a thousand, but a lot less than 99%.

This is an application of Bayes’s theorem, which says

P (A1|B) =
P (A1 ∩B)

P (B)
=

P (B|A1)P (A1)

P (B|A1)P (A1) + P (B|A2)P (A2)
(4.17)

or, for k mutually exclusive, exhaustive alternatives,

P (A1|B) =
P (B|A1)P (A1)∑k
i=1 P (B|Ai)P (Ai)

(4.18)

Practice Problems

2.45, 2.59, 2.63, 2.67, 2.71, 2.105 parts a & b
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