
Joint Probability Distributions and Random Samples
(Devore Chapter Five)

1016-345-01: Probability and Statistics for Engineers∗

Fall 2012

Contents

1 Joint Probability Distributions 2
1.1 Two Discrete Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Independence of Random Variables . . . . . . . . . . . . . . . . . . . 3
1.2 Two Continuous Random Variables . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Collection of Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Example of Double Integration . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Expected Values, Covariance and Correlation 8

3 Statistics Constructed from Random Variables 11
3.1 Random Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 What is a Statistic? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Mean and Variance of a Random Sample . . . . . . . . . . . . . . . . . . . . 12
3.4 Sample Variance Explained at Last . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Linear Combinations of Random Variables . . . . . . . . . . . . . . . . . . . 15
3.6 Linear Combination of Normal Random Variables . . . . . . . . . . . . . . . 16

4 The Central Limit Theorem 17

5 Summary of Properties of Sums
of Random Variables 20

∗Copyright 2012, John T. Whelan, and all that

1



Tuesday 16 October 2012

1 Joint Probability Distributions

Consider a scenario with more than one random variable. For concreteness, start with two,
but methods will generalize to multiple ones.

1.1 Two Discrete Random Variables

Call the rvs X and Y . The generalization of the pmf is the joint probability mass function,
which is the probability that X takes some value x and Y takes some value y:

p(x, y) = P ((X = x) ∩ (Y = y)) (1.1)

Since X and Y have to take on some values, all of the entries in the joint probability table
have to sum to 1: ∑

x

∑
y

p(x, y) = 1 (1.2)

We can collect the values into a table: Example: problem 5.1:
y

p(x, y) 0 1 2
0 .10 .04 .02

x 1 .08 .20 .06
2 .06 .14 .30

This means that for example there is a 2% chance that x = 1 and y = 3. Each combination
of values for X and Y is an outcome that occurs with a certain probability. We can combine
those into events; e.g., the event (X ≤ 1)∩ (Y ≤ 1) consists of the outcomes in which (X,Y )
is (0, 0), (0, 1), (1, 0), and (1, 1). If we call this set of (X,Y ) combinations A, the probability
of the event is the sum of all of the probabilities for the outcomes in A:

P ((X,Y ) ∈ A) =
∑∑
(x,y)∈A

p(x, y) (1.3)

So, specifically in this case,

P ((X ≤ 1) ∩ (Y ≤ 1)) = .10 + .04 + .08 + .20 = .42 (1.4)

The events need not correspond to rectangular regions in the table. For instance, the
event X < Y corresponds to (X,Y ) combinations of (0, 1), (0, 2), and (1, 2), so

P (X < Y ) = .04 + .02 + .06 = .12 (1.5)

Another event you can consider is X = x for some x, regardless of the value of Y . For
example,

P (X = 1) = .08 + .20 + .06 = .34 (1.6)
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But of course P (X = x) is just the pmf for X alone; when we obtain it from a joint pmf, we
call it a marginal pmf:

pX(x) = P (X = x) =
∑
y

p(x, y) (1.7)

and likewise
pY (y) = P (Y = y) =

∑
x

p(x, y) (1.8)

For the example above, we can sum the columns to get the marginal pmf pY (y):
y 0 1 2
pY (y) .24 .38 .38

or sum the rows to get the marginal pmf pX(x):
x pX(x)
0 .16
1 .34
2 .50

They’re apparently called marginal pmfs because you can write the sums of columns and
rows in the margins:

y
p(x, y) 0 1 2 pX(x)

0 .10 .04 .02 .16
x 1 .08 .20 .06 .34

2 .06 .14 .30 .50
pY (y) .24 .38 .38

1.1.1 Independence of Random Variables

Recall that two events A and B are called independent if (and only if) P (A∩B) = P (A)P (B).
That definition extends to random variables:

Two random variables X and Y are independent if and only if the events X = x and
Y = y are independent for all choices of x and y, i.e., if p(x, y) = pX(x)pY (y) for all x and y.

We can check if this is true for our example. For instance, pX(2)pY (2) = (.50)(.38) = .19
while p(2, 2) = .30 so p(2, 2) 6= pX(2)pY (2), which means that X and Y are not independent.
(If X and Y were independent, we’d have to check that by checking p(x, y) = pX(x)pY (y)
for each possible combination of x and y.)

1.2 Two Continuous Random Variables

We now consider the case of two continuous rvs. It’s not really convenient to use the cdf
like we did for one variable, but we can extend the definition of the pdf by considering the
probability that X and Y lie in a tiny box centered on (x, y) with sides ∆x and ∆y. This
probability will go to zero as either ∆x or ∆y goes to zero, but if we divide by ∆x∆y we
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get something which remains finite. This is the joint pdf :

f(x, y) = lim
∆x,∆y→0

P
((
x− ∆x

2
< X < x+ ∆x

2

)
∩
(
y − ∆y

2
< Y < y + ∆y

2

))
∆x∆y

(1.9)

We can construct from this the probability that (X,Y ) will lie within a certain region

P ((X,Y ) ∈ A) ≈
∑∑
(x,y)∈A

f(x, y) ∆x∆y (1.10)

What is that, exactly? First, consider special case of a rectangular region where a < x < b
and c < y < d. Divide it into M pieces in the x direction and N pieces in the y direction:

P ((a < X < b) ∩ (c < Y < d)) ≈
M∑
i=1

N∑
j=1

f(xi, yj) ∆x∆y (1.11)

Now,
N∑
j=1

f(xi, yj) ∆y ≈
∫ d

c

f(xi, y) dy (1.12)

so
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P ((a < X < b) ∩ (c < Y < d)) ≈
M∑
i=1

∫ d

c

f(xi, y) dy∆x ≈
∫ b

a

(∫ d

c

f(x, y) dy

)
dx (1.13)

This is a double integral. We integrate with respect to y and then integrate with respect
to x. Note that there was nothing special about the order we approximated the sums as
integrals. We could also have taken the limit as the x spacing went to zero first, and then
found
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P ((a < X < b) ∩ (c < Y < d)) ≈
N∑
j=1

M∑
i=1

f(xi, yj) ∆x∆y ≈
N∑
j=1

∫ b

a

f(x, yj) dx∆y

≈
∫ d

c

(∫ b

a

f(x, y) dx

)
dy

(1.14)

As long as we integrate over the correct region of the x, y plane, it doesn’t matter in what
order we do it.

All of these approximations get better and better as ∆x and ∆y go to zero, so the
expression involving the integrals is actually exact:

P ((a < X < b) ∩ (c < Y < d)) =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy (1.15)

The normalization condition is that the probability density for all values of X and Y has to
integrate up to 1: ∫ ∞

−∞

∫ ∞
−∞

f(x, y) dx dy = 1 (1.16)

Practice Problems

5.1, 5.3, 5.9, 5.13, 5.19, 5.21

Thursday 18 October 2012

1.3 Collection of Formulas

Discrete Continuous

Definition p(x, y) = P ([X = x] ∩ [Y = y]) f(x, y) ≈ P([X=x±∆x
2 ]∩[Y =y±∆y

2 ])
∆x∆y

Normalization
∑

x

∑
y p(x, y) = 1

∫∞
−∞

∫∞
−∞ f(x, y) dx dy = 1

Region A P ((X,Y ) ∈ A) =
∑∑
(x,y)∈A

p(x, y) P ((X,Y ) ∈ A) =
∫ ∫

(x,y)∈A
f(x, y) dx dy

Marginal pX(x) =
∑

y p(x, y) fX(x) =
∫∞
−∞ f(x, y) dy

X & Y indep iff p(x, y) = pX(x)pY (y) for all x, y f(x, y) = fX(x)fY (y) for all x, y
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1.4 Example of Double Integration

Last time, we calculated the probability that a
pair of continuous random variables X and Y
lie within a rectangular region. Now let’s con-
sider how we’d integrate to get the probability
that (X,Y ) lie in a less simple region, specifi-
cally X < Y . For simplicity, assume that the
joint pdf f(x, y) is non-zero only for 0 ≤ x ≤ 1
and 0 ≤ y ≤ 1. So we want to integrate

P (X < Y ) =

∫ ∫
x<y

f(x, y) dx dy (1.17)

The region we want to integrate over is shown
in the figure at right:

If we do the y integral first, that means that,
for each value of x, we need work out the range
of y values. This means slicing up the triangle
along lines of constant x and integrating in the
y direction for each of those (see right)
The conditions for a given x are y ≥ 0, y > x,
and y ≤ 1. So the minimum possible y is x
and the maximum is 1, and the integral is

P (X < Y ) =

∫ 1

0

(∫ 1

x

f(x, y) dy

)
dx (1.18)

We integrate x over the full range of x, from 0
to 1, because there is a strip present for each
of those xs. Note that the limits of the y inte-
gral depend on x, which is fine because the y
integral is inside the x integral.
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If, on the other hand, we decided to do the
x integral first, we’d be slicing up into slices
of constant x and considering the range of x
values for each possible y (see right).
Now, given a value of y, the restrictions on x
are x ≥ 0, x < y, and x ≤ 1, so the minimum
x is 0 and the maximum is y, which makes the
integral

P (X < Y ) =

∫ 1

0

(∫ y

0

f(x, y) dx

)
dy (1.19)

The integral over y is over the whole range
from 0 to 1 because there is a constant-y strip
for each of those values.

Note that the limits on the integrals are different depending on which order the integrals
are done. The fact that we get the same answer (which should be apparent from the fact
that we’re covering all the points of the same region) is apparently called Fubini’s theorem.

2 Expected Values, Covariance and Correlation

We can extend further concepts to the realm of multiple random variables. For instance, the
expected value of any function h(X,Y ) which can be constructed from random variables X
and Y is taken by multiplying the value of the function corresponding to each outcome by
the probability of that outcome:

E(h(X,Y )) =
∑
x

∑
y

h(x, y) p(x, y) (2.1)

In the case of continuous rvs, we replace the pmf with the pdf and the sums with integrals:

E(h(X,Y )) =

∫ ∞
−∞

∫ ∞
−∞

h(x, y) f(x, y) dx dy (2.2)

(All of the properties we’ll show in this section work for both discrete and continuous dis-
tributions, but we’ll do the explicit demonstrations in one case; the other version can be
produced via a straightforward conversion.)

In particular, we can define the mean value of each of the random variables as before

µX = E(X) (2.3a)

µY = E(Y ) (2.3b)

8



and likewise the variance:

σ2
X = V (X) = E((X − µX)2) = E(X2)− µ2

X (2.4a)

σ2
Y = V (Y ) = E((Y − µY )2) = E(Y 2)− µ2

Y (2.4b)

Note that each of these is a function of only one variable, and we can calculate the expected
value of such a function without having to use the full joint probability distribution, since
e.g.,

E(h(X)) =
∑
x

∑
y

h(x) p(x, y) =
∑
x

h(x)
∑
y

p(x, y) =
∑
x

h(x) pX(x) . (2.5)

Which makes sense, since the marginal pmf pX(x) = P (X = x) is just the probability
distribution we’d assign to X if we didn’t know or care about Y .

A useful expected value which is constructed from a function of both variables is the
covariance. Instead of squaring (X − µX) or (Y − µY ), we multiply them by each other:

Cov(X,Y ) = E([X − µX ][Y − µY ]) = E(XY )− µXµY (2.6)

It’s worth going explicitly through the derivation of the shortcut formula:

E([X − µX ][Y − µY ]) = E(XY − µXY − µYX + µXµY )

= E(XY )− µXE(Y )− µYE(X) + µXµY

= E(XY )− µXµY −����µY µX +����µXµY

(2.7)

We can show that the covariance of two independent random variables is zero:

E(XY ) =
∑
x

∑
y

x y p(x, y) =
∑
x

∑
y

x y pX(x) pY (y) =
∑
x

(
x pX(x)

(∑
y

y pY (y)

))
=
∑
x

x pX(x)µY = µY

∑
x

x pX(x) = µXµY if X and Y are independent

(2.8)

The converse is, however, not true. We can construct a probability distribution in which X
and Y are not independent but their covariance is zero:

y
p(x, y) −1 0 1 pX(x)

−1 0 .2 0 .2
x 0 .2 .2 .2 .6

1 0 .2 0 .2
pY (y) .2 .6 .2

From the form of the marginal pmfs, we can see µX = 0 = µY , and if we calculate

E(XY ) =
∑
x

∑
y

x y p(x, y) (2.9)
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we see that for each x, y combination for which p(x, y) 6= 0, either x or y is zero, and so
Cov(X,Y ) = E(XY ) = 0.

Unlike variance, covariance can be positive or negative. For example, consider two rvs
with the joint pmf

y
p(x, y) −1 0 1 pX(x)

−1 .2 0 0 .2
x 0 0 .6 0 .6

1 0 0 .2 .2
pY (y) .2 .6 .2

Since we have the same marginal pmfs as before, µXµY = 0, and

Cov(X,Y ) = E(XY ) =
∑
x

∑
y

x y p(x, y) = (−1)(−1)(.2) + (1)(1)(.2) = .4 (2.10)

The positive covariance means X tends to be positive when Y is positive and negative when
Y is negative.

On the other hand if the pmf is

y
p(x, y) −1 0 1 pX(x)

−1 0 0 .2 .2
x 0 0 .6 0 .6

1 .2 0 0 .2
pY (y) .2 .6 .2

which again has µXµY = 0, the covariance is

Cov(X,Y ) = E(XY ) =
∑
x

∑
y

x y p(x, y) = (−1)(1)(.2) + (1)(−1)(.2) = −.4 (2.11)

One drawback of covariance is that, like variance, it depends on the units of the quantities
considered. If the numbers above were in feet, the covariance would really be .4 ft2; if you
converted X and Y into inches, so that 1 ft became 12 in, the covariance would become
57.6 (actually 57.6 in2). But there wouldn’t really be any increase in the degree to which
X and Y are correlated; the change of units would just have spread things out. The same
thing would happen to the variances of each variable; the covariance is measuring the spread
of each variable along with the correlation between them. To isolate a measure of how
correlated the variables are, we can divide by the product of their standard deviations and
define something called the correlation coëfficient :

ρX,Y ≡ Corr(X,Y ) =
Cov(X,Y )

σX σY
(2.12)
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To see why the product of the standard deviations is the right thing, suppose that X and Y
have different units, e.g., X is in inches and Y is in seconds. Then µX is in inches, σ2

X is in
inches squared, and σX is in inches. Similar arguments show that µY and σY are in seconds,
and thus Cov(X,Y ) is in inches times seconds, so dividing by σXσY makes all of the units
cancel out.

Exercise: work out σX , σY , and Corr(X,Y ) for each of these examples.

Practice Problems

5.25, 5.27, 5.31, 5.33, 5.37, 5.39

Tuesday 23 October 2012

3 Statistics Constructed from Random Variables

3.1 Random Samples

We’ve done explicit calculations so far on pairs of random variables, but of course everything
we’ve done extends to the general situation where we have n random variables, which we’ll
call X1, X2, . . .Xn. Depending on whether the rvs are discrete or continuous, there is a joint
pmf or pdf

p(x1, x2, . . . , xn) or f(x1, x2, . . . xn) (3.1)

from which probabilities and expected values can be calculated in the usual way.
A special case of this is if the n random variables are independent. Then the pmf or pdf

factors, e.g., for the case of a continuous rv,

X1, X2, . . . Xn independent means f(x1, x2, . . . xn) = fX1(x1)fX2(x2) · · · fXn(xn) (3.2)

An even more special case is when each of the rvs follows the same distribution, which we
can then write as e.g., f(x1) rather than fX1(x1). Then we say the n rvs are independent
and identically distributed or iid. Again, writing this explicitly for the continuous case,

X1, X2, . . . Xn iid means f(x1, x2, . . . xn) = f(x1)f(x2) · · · f(xn) (3.3)

This is a useful enough concept that it has a name, and we call it a random sample of size
n drawn from the distribution with pdf f(x). For example, if we roll a die fifteen times, we
can make statements about those fifteen numbers taken together.

3.2 What is a Statistic?

Often we’ll want to combine the n numbers X1, X2, . . .Xn into some quantity that tells
us something about the sample. For example, we might be interested in the average of
the numbers, or their sum, or the maximum among them. Any such quantity constructed
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out of a set of random variables is called a statistic. (It’s actually a little funny to see
“statistic” used in the singular, since one thinks of the study of statistics as something like
physics or mathematics, and we don’t talk about “a physic” or “a mathematic”.) A statistic
constructed from random variables is itself a random variable.

3.3 Mean and Variance of a Random Sample

Remember that if we had a specific set of n numbers x1, x2, . . . xn, we could define the sample
mean and sample variance as

x =
1

n

n∑
i=1

xi (3.4a)

s2 =
1

n− 1

n∑
i=1

(xi − x)2 (3.4b)

On the other hand, if we have a single random variable X, its mean and variance are
calculated with the expected value:

µX = E(X) (3.5a)

σ2
X = E([X − µX ]2) (3.5b)

So, given a set of n random variables, we could combine them in the same ways we combine
sample points, and define the mean and variance of those n numbers

X =
1

n

n∑
i=1

Xi (3.6a)

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 (3.6b)

Each of these is a statistic, and each is a random variable, which we stress by writing it with a
capital letter. We could then ask about quantities derived from the probability distributions
of the statistics, for example

µX = E(X) (3.7a)

(σX)2 = V (X) = E([X − µX ]2) (3.7b)

µS2 = E(S2) (3.7c)

(σS2)2 = V (S2) = E([S2 − µS2 ]2) (3.7d)

Of special interest is the case where the {Xi} are an iid random sample. We can actually
work the means and variances just by using the fact that the expected value is a linear
operator. So

µX = E(X) = E

(
1

n

n∑
i=1

Xi

)
=

1

n

n∑
i=1

E(Xi) =
1

n

n∑
i=1

µX = µX (3.8)
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which is kind of what we’d expect: the average of n iid random variables has an expected
value which is equal to the mean of the underlying distribution. But we can also consider
what the variance of the mean is. I.e., on average, how far away will the mean calculated
from a random sample be from the mean of the underlying distribution?

(σX)2 = V (X) = V

(
1

n

n∑
i=1

Xi

)
= E

[ 1

n

n∑
i=1

Xi − µX

]2
 (3.9)

It’s easy to get a little lost squaring the sum, but we can see the essential point of what
happens in the case where n = 2:

(σX)2 = E

([
1

2
(X1 +X2)− µX

]2
)

= E

([
1

2
(X1 − µX) +

1

2
(X2 − µX)

]2
)

= E

(
1

4
(X1 − µX)2 +

1

2
(X1 − µX)(X2 − µX) +

1

4
(X2 − µX)2

) (3.10)

Since the expected value operation is linear, this is

(σX)2 =
1

4
E([X1 − µX ]2) +

1

2
E([X1 − µX ][X2 − µX ]) +

1

4
E([X2 − µX ]2)

=
1

4
V (X1) +

1

2
Cov(X1, X2) +

1

4
V (X2)

(3.11)

But since X1 and X2 are independent random variables, their covariance is zero, and

(σX)2 =
1

4
σ2
X +

1

4
σ2
X =

1

2
σ2
X (3.12)

The same thing works for n iid random variables: the cross terms are all covariances which
equal zero, and we get n copies of 1

n2σ
2
X so that

(σX)2 =
1

n
σ2
X (3.13)

This means that if you have a random sample of size n, the sample mean will be a better
estimate of the underlying population mean the larger n is. (There are assorted anecdotal
examples of this in Devore.)

Note that these statements can also be made about the sum

To = X1 +X2 + · · ·+Xn = nX (3.14)

rather than the mean, and they are perhaps easier to remember:

µTo = E(To) = nµX (3.15a)

(σTo)
2 = V (To) = nσ2

X (3.15b)
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3.4 Sample Variance Explained at Last

We now have the machinery needed to show that µS2 = σ2
X . This result is what validates

using the factor of 1
n−1

rather than 1
n

in the definition of sample variance way back at the
beginning of the quarter, so it’s worth doing as a demonstration of the power of the formalism
of random samples.

The sample variance

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 (3.16)

is a random variable. Its mean value is

E(S2) = E

(
1

n− 1

n∑
i=1

(Xi −X)2

)
=

1

n− 1

n∑
i=1

E
(
[Xi −X]2

)
(3.17)

If we write
Xi −X = (Xi − µX)− (X − µX) (3.18)

we can look at the expected value associated with each term in the sum:

E
(
[Xi −X]2

)
= E

([
(Xi − µX)− (X − µX)

]2)
= E

(
[(Xi − µX)]2

)
− 2E

(
[Xi − µX ]

[
X − µX

])
+ E

([
X − µX

]2) (3.19)

The first and last terms are just the variance of Xi and X, respectively:

E
(
[(Xi − µX)]2

)
= V (Xi) = σ2

X (3.20)

E
([

(X − µX)
]2)

= V (X) =
σ2
X

n
(3.21)

To evaluate the middle term, we can expand out X to get

E
(
[Xi − µX ]

[
X − µX

])
=

1

n

n∑
j=1

E ([Xi − µX ] [Xj − µX ]) (3.22)

Since the rvs in the sample are independent, the covariance between different rvs is zero:

E ([Xi − µX ] [Xj − µX ]) = Cov(Xi, Xj) =

{
0 i 6= j

σ2
X i = j

(3.23)

Since there is only one term in the sum for which j = i,

n∑
j=1

E ([Xi − µX ] [Xj − µX ]) = σ2
X (3.24)
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and

E
(
[Xi − µX ]

[
X − µX

])
=
σ2
X

n
(3.25)

Putting it all together we get

E
(
[Xi −X]2

)
= σ2

X − 2
σ2
X

n
+
σ2
X

n
=

(
1− 1

n

)
σ2
X =

n− 1

n
σ2
X (3.26)

and thus

E(S2) =
1

n− 1

n∑
i=1

n− 1

n
σ2
X = σ2

X (3.27)

Q.E.D.!

Practice Problems

5.37, 5.39, 5.41, 5.45, 5.49

Thursday 25 October 2012

3.5 Linear Combinations of Random Variables

These results about the means of a random sample are special cases of general results from
section 5.5, where we consider a general linear combination of any n rvs (not necessarily iid)

Y = a1X1 + a2X2 + · · · anXn =
n∑

i=1

aiXi (3.28)

and show that

µY = E(Y ) = a1E(X1) + a2E(X2) + · · ·+ anE(Xn) = a1µ1 + a2µ2 + · · ·+ anµn (3.29)

and

if X1, . . . , Xn independent, V (Y ) = a1
2V (X1) + a2

2V (X2) + · · ·+ an
2V (Xn) (3.30)

The first result follows from linearity of the expected value; the second can be illustrated for
n = 2 as before:

V (a1X1 + a2X2) = E
(
[(a1X1 + a2X2)− µY ]2

)
= E

(
[(a1X1 + a2X2)− (a1µ1 + a2µ2)]2

)
= E

(
[a1(X1 − µ1) + a2(X2 − µ2)]2

)
= E

(
a1

2(X1 − µ1)2 + 2a1a2(X1 − µ1)(X2 − µ2) + a2
2(X2 − µ2)2

)
= a1

2V (X1) + 2a1a2 Cov(X1, X2) + a2
2V (X2)

(3.31)

and then the cross term vanishes if X1 and X2 are independent.
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3.6 Linear Combination of Normal Random Variables

To specify the distribution of a linear combination of random variables, beyond its mean and
variance, you have to know something about the distributions of the individual variables.
One useful result is that a linear combination of independent normally-distributed random
variables is itself normally distributed. We’ll show this for the special case of the sum of two
independent standard normal random variables:

Y = Z1 + Z2 (3.32)

How do we get the pdf p(Y )? Well, for one rv, we can fall back on our trick of going via the
cumulative distribution function

F (y) = P (Y ≤ y) = P (Z1 + Z2 ≤ y) (3.33)

Now, Z1 + Z2 ≤ y is just an event which defines a region in the z1, z2 plane, so we can
evaluate its probability as

F (y) =
x

z1+z2≤y

f(z1, z2) =

∫ ∞
−∞

∫ y−z2

−∞

e−z1
2/2

√
2π

e−z2
2/2

√
2π

dz1 dz2 (3.34)

Where the limits of integration for the z1 integral come from the condtion z1 ≤ y− z2. Since
z1 and z2 are just integration variables, let’s rename them to w and z to reduce the amount
of writing we’ll have to do:

F (y) =

∫ ∞
−∞

∫ y−z

−∞

e−w
2/2

√
2π

e−z
2/2

√
2π

dw dz =

∫ ∞
−∞

Φ (y − z)
e−z

2/2

√
2π

dz (3.35)

We’ve used the usual definition of the standard normal cdf to do the w integral, but now
we’re sort of stuck with the z integral. But if we just want the pdf, we can differentiate with
respect to y, using

d

dy
Φ (y − z) =

e−(y−z)2/2

√
2π

(3.36)

so that

f(y) = F ′(y) =

∫ ∞
−∞

e−(y−z)2/2

√
2π

e−z
2/2

√
2π

dz =

∫ ∞
−∞

1

2π
exp

(
−(y − z)2 − z2

2

)
dz (3.37)

The argument of the exponential is

−(y − z)2 − z2

2
= −z2 + yz − 1

2
y2 = −

(
z − y

2

)2

+
1

4
y2 − 1

2
y2 (3.38)

If we define a new integration variable u by

u√
2

= z − y

2
(3.39)
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so that dz = du/
√

2, the integral becomes

F (y) =

∫ ∞
−∞

1

2π
exp

(
−u

2

2
− y2

4

)
du =

1√
2
√

2π
e−y

2/4

∫ ∞
−∞

1√
2π
e−u

2/2 du

=
1√

2
√

2π
e−y

2/(2[
√

2]2)

(3.40)

which is just the pdf for a normal random variable with mean 0+0 = 0 and variance 1+1 = 2.
The demonstration a linear combination of standard normal rvs, or for the sum of normal

rvs with different means, is similar, but there’s a little more algebra to keep track of the
different σs.

4 The Central Limit Theorem

We have shown that if you add a bunch of independent random variables, the resulting
statistic has a mean which is the sum of the individual means and a variance which is the
sum of the individual variances. There is remarkable theorem which means that if you add
up enough iid random variables, the mean and variance are all you need to know. This is
known as the Central Limit Theorem:

If X1, X2, . . .Xn are independent random variables each from the same distri-
bution with mean µ and variance σ2

X , their sum To = X1 + X2 + · · · + Xn has
a distribution which is approximately a normal distribution with mean nµ and
variance nσ2

X , with the approximation being better the larger n is.

The same can also be said for the sample mean X = To/n, but now the mean is µ and the
variance is σ2

X/n. As a rule of thumb, the central limit theorem applies for n & 30.
We have actually already used the central limit theorem when approximating a binomial

distribution with the corresponding normal distribution. A binomial rv can be thought of
as the sum of n Bernoulli random variables.

17



You may also have seen the central limit theorem in action if you’ve considered the pmf
for the results of rolling several six-sided dice and adding the results. With one die, the
results are uniformly distributed:

If we roll two dice and add the results, we get a non-uniform distribution, with results
close to 7 being most likely, and the probability distribution declining linearly from there:

18



If we add three dice, the distribution begins to take on the shape of a “bell curve” and in
fact such a random distribution is used to approximate the distribution of human physical
properties in some role-playing games:

Adding more and more dice produces histograms that look more and more like a normal
distribution:
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5 Summary of Properties of Sums

of Random Variables

Property When is it true?

E(To) =
∑n

i=1 E(Xi) Always
V (To) =

∑n
i=1 V (Xi) When {Xi} independent

To normally distributed
Exact, when {Xi} normally distributed

Approximate, when n & 30 (Central Limit Theorem)

Practice Problems

5.55, 5.57, 5.61, 5.65, 5.67, 5.89
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