1016-345-01
 Probability and Statistics for Engineers

Problem Set 4

Assigned 2012 September 25
Due 2012 October 2

Show your work on all problems! If you use a computer to assist with numerical computations, turn in your source code as well.

1 Devore Chapter 4, Problem 32

Note that problem 4.32 is different in the seventh and eighth editions of Devore. Be sure to do the problem from the eighth edition.

2 Devore Chapter 4, Problem 54

3 Devore Chapter 4, Problem 60

4 Devore Chapter 4, Problem 66

5 Computational Exercise (Extra Credit)

This problem will help you illustrate explicitly how a binomial distribution can be approximated by a normal distribution.
a. Consider a binomial random variable X with $n=80$ and $p=0.25$; plot its pmf $b(x ; n, p)$.
b. Construct the corresponding normal random variable Y with $\mu=n p=20$ and variance $\sigma^{2}=n p(1-p)=15$, and plot its pdf.
c. The pmf in part (a) and the pdf in part (b) should look similar, but a more direct comparison can be made using the cdfs. Plot, on the same set of axes,
(a) the cumulative distribution function $B(x ; n, p)$;
(b) the approximate $\operatorname{cdf} \Phi\left(\frac{x-n p}{\sqrt{n p(1-p)}}\right)$ without the continuity correction;
(c) the approximate $\operatorname{cdf} \Phi\left(\frac{x+.5-n p}{\sqrt{n p(1-p)}}\right)$ with the continuity correction.

Hint: if you use matplotlib, the following function will be useful for calculating $\Phi(z)$:
from scipy.special import ndtr as Phi

