# 1016-345-01 <br> Probability and Statistics for Engineers 

Problem Set 1

Assigned 2013 March 5
Due 2013 March 12

## Show your work on all problems!

## 1 Devore Chapter 2, Problem 14

Note that problem 2.14 is different in the seventh and eighth editions of Devore. Be sure to do the problem from the eighth edition.

## 2 Devore Chapter 2, Problem 34

Note that problem 2.34 is different in the seventh and eighth editions of Devore. Be sure to do the problem from the eighth edition.

## 3 Devore Chapter 2, Problem 60

## 4 Devore Chapter 2, Problem 110

## 5 Computational Exercise (Extra Credit)

This exercise lets you see how the relative frequency an outcomes in a repeated experiment approximates the probability of that outcome.

Generate a sequence of $N=1,000,000$ random integers, each equally likely to be $1,2,3,4$, or 5 . Define $n_{k}$ to be the number of fives in the first $k$ integers in your sequence, so that $n_{k} / k$ is the relative frequency of fives among the first $k$ integers. By the definition of probability as a limiting relative frequency, $\lim _{k \rightarrow \infty} \frac{n_{k}}{k}=\frac{1}{5}=.2$
a. Plot $\frac{n_{k}}{k}$ versus $k$ for $1 \leq k \leq 50$.
b. Plot $\frac{n_{k}}{k}$ versus $k$ for $1 \leq k \leq 1000$.
c. Produce a semilog plot of $\frac{n_{k}}{k}$ versus $k$, using a logarithmic scale for $1 \leq k \leq 10^{6}$.

Hint: if you use matlab or the python library NumPy for your calculations, you may find the cumsum( ) function useful, along with the construction $\mathrm{d}==5$, which will produce an array of true (1) and false (0) values of the same size as d.

