1016-345-01
 Probability and Statistics for Engineers

Problem Set 2

Assigned 2013 March 12
Due 2013 March 19

Show your work on all problems! If you use a computer to assist with numerical computations, turn in your source code as well.

1 Devore Chapter 3, Problem 12 2 Devore Chapter 3, Problem 18
 3 Devore Chapter 3, Problem 32
 4 Devore Chapter 3, Problem 46
 5 Computational Exercise (Extra Credit)

This exercise lets you apply the binomial distribution and Bayes's theorem to consider the interpretation of a (somewhat) realistic experiment.

Suppose that you have a box containing ten six-sided dice. Nine of them are fair ($1 / 6$ chance of rolling each number), and one is loaded so that it has a 50% chance of rolling a six. Suppose you pick up one of the dice, roll it $n=30$ times, and count how many sixes you get.
a. If you choose the fair die, the random variable X representing the number of sixes will obey a binomial distribution

$$
p(x \mid \text { fair })=\binom{n}{x}\left(\frac{1}{6}\right)^{x}\left(\frac{5}{6}\right)^{n-x}
$$

Use a computer to plot $p(x \mid$ fair) versus x for all of the possible values of x. (Hint: if you're using python, the binomial coëfficient $\binom{n}{x}$ can be calculated with the scipy function comb (n, x), so you need
from scipy.misc import comb
Also, it's a good idea to use $1 . / 6$. rather than $1 / 6$ to avoid the gotchas of integer division.
b. If you choose the loaded die, X will obey

$$
p(x \mid \text { loaded })=\binom{n}{x}\left(\frac{1}{2}\right)^{x}\left(\frac{1}{2}\right)^{n-x}
$$

Use a computer to plot $p(x \mid$ loaded $)$ versus x for all of the possible values of x.
c. If you choose a die at random, the a priori probability of choosing a fair die is $p(f$ fair $)=.9$ while $p($ loaded $)=.1$. Using the law of total probabilty, you can find

$$
p(x)=p(x \mid \text { fair }) p(\text { fair })+p(x \mid \text { loaded }) p(\text { loaded })
$$

use a computer to plot $p(x)$ vs x.
d. You can now use Bayes's theorem to calculate

$$
p(\text { fair } \mid x)=\frac{p(x \mid \text { fair }) p(\text { fair })}{p(x)}
$$

for each possible value of x. Use a computer to plot $p($ fair $\mid x)$ vs x.
e. Find the explicit value of p (fair|15), the probability that you chose the fair die, given that 15 out of 30 rolls were sixes.

