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1 Multivariate Distributions

We introduced a random variable X as a function X(c) which
assigned a real number to each outcome c in the sample space
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C. There’s no reason, of course, that we can’t define multiple
such functions, and we now turn to the formalism for dealing
with multiple random variables at the same time.

1.1 Random Vectors

We can think of several random variables X1, X2, . . . Xn as mak-
ing up the elements of a random vector

X =


X1

X2
...
Xn

 (1.1)

We can define an event X ∈ A corresponding to the random
vector X lying in some region A ⊂ Rn, and use the probability
function to define the probability P (X ∈ A) of this event.

We’ll focus on n = 2 initially, and define the joint cumulative
distribution function of two random variables X1 and X2 as

FX1,X2(x1, x2) = P ([X1 ≤ x1] ∩ [X2 ≤ x2]) (1.2)

As in the case of a single random variable, this can be used as a
starting point for defining the probability of any event we like.
For example, with a bit of algebra it’s possible to show that

P [(a1 <X1 ≤ b1) ∩ (a2 <X2 ≤ b2)]

= F (b1, b2)− F (b1, a2)− F (a1, b2) + F (a1, a2) (1.3)

where we have suppressed the subscript X1, X2 since there’s only
one cdf of interest at the moment. We won’t really dwell on this,
though, since it’s a lot easier to work with joint probability mass
and density functions.

1.1.1 Two Discrete Random Variables

If both random variables are discrete, i.e., they can take on either
a finite set of values, or at most countably many values, the
joint cdf will once again be constant aside from discontinuities,
and we can describe the situation using a joint probability mass
function

pX1,X2(x1, x2) = P [(X1 = x1) ∩ (X2 = x2)] (1.4)

We give an example of this, in which we for convenience refer
to the random variables as X and Y . Recall the example of
three flips of a fair coin, in which we defined X as the number
of heads. Now let’s define another random variable Y , which is
the number of tails we see before the first head is flipped. (If all
three flips are tails, then Y is defined to be 3. We can work out
the probabilities by first just enumerating all of the outcomes,
which are assumed to have equal probability because the coin is
fair:

outcome c P (c) X value Y value
HHH 1/8 3 0
HHT 1/8 2 0
HTH 1/8 2 0
HTT 1/8 1 0
THH 1/8 2 1
THT 1/8 1 1
TTH 1/8 1 2
TTT 1/8 0 3
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We can look through and see that

pX,Y (x, y) =



1/8 x = 3, y = 0

2/8 x = 2, y = 0

1/8 x = 1, y = 0

1/8 x = 2, y = 1

1/8 x = 1, y = 1

1/8 x = 1, y = 2

1/8 x = 0, y = 3

0 otherwise

(1.5)

This is most easily summarized in a table:

y
pX,Y (x, y) 0 1 2 3

x

0 0 0 0 1/8
1 1/8 1/8 1/8 0
2 2/8 1/8 0 0
3 1/8 0 0 0

Note that it’s a lot more convenient to work with the joint pmf
than the joint cdf. It takes a fair bit of concentration to work

out the joint cdf, but if you do, you get

FX,Y (x, y) =



0 x < 0

0 0 ≤ x < 1, y < 3

1/8 0 ≤ x < 1, 3 ≤ y

0 1 ≤ x, y < 0

1/8 1 ≤ x < 2, 0 ≤ y < 1

2/8 1 ≤ x < 2, 1 ≤ y < 2

3/8 1 ≤ x < 2, 2 ≤ y < 3

4/8 1 ≤ x < 2, 3 ≤ y

3/8 2 ≤ x < 3, 0 ≤ y < 1

5/8 2 ≤ x < 3, 1 ≤ y < 2

6/8 2 ≤ x < 3, 2 ≤ y < 3

8/8 2 ≤ x, 3 ≤ y

4/8 3 ≤ x, 0 ≤ y < 1

7/8 3 ≤ x, 1 ≤ y < 3

(1.6)

This is not very enlightening, and not really much more so if
you plot it:
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So instead, we’ll work with the joint pmf and use it to calculate
probabilities like

P (X + Y = 2) = pX,Y (2, 0) + pX,Y (1, 1) =
2

8
+

1

8
=

3

8
(1.7)

and

P [(0<X ≤ 2) ∩ (Y ≤ 1)]

= pX,Y (1, 0) + pX,Y (1, 1) + pX,Y (2, 0) + pX,Y (2, 1)

=
1

8
+

1

8
+

2

8
+

1

8
=

5

8
(1.8)

In general,

P [(X,Y ) ∈ A] =
∑

(x,y)∈A

pX,Y (x, y) (1.9)

1.1.2 Two Continuous Random Variables

On the other hand, we may be dealing with continuous random
variables, which means that the joint cdf FX,Y (x, y) is continu-
ous. Then we can proceed as before and define a probability den-
sity function by taking derivatives of the cdf. In this case, since
FX,Y (x, y) has multiple arguments, we take the partial derivative
so that the joint pdf is

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y
(1.10)

We won’t worry too much about this derivative for now, since
in practice, we will start with the joint pdf rather than differ-
entiating the joint cdf to get it. We can use the pdf to assign a
probability for the random vector (X,Y ) to be in some region
of the (x, y) plane

P [(X,Y ) ∈ A] =
x

(x,y)∈A

fX,Y (x, y) dx dy (1.11)

For example, for a rectangular region we have

P [(a<X<b)∩(c<Y <d)] =

∫ b

a

(∫ d

c

fX,Y (x, y) dy

)
dx . (1.12)

We can connect the joint pdf to the joint cdf by considering the
event (−∞<X ≤ x) ∩ (−∞< Y ≤ y):

P [(−∞<X≤x)∩(−∞<Y ≤y)] =

∫ x

−∞

(∫ y

−∞
fX,Y (t, u) du

)
dt ,

(1.13)
where we have called the integration variables t and u rather
than x and y because the latter were already in use.

As another example, for the event X + 2Y < c, where the
region of integration looks like this:

− c
2

0 c
2

c

x

− c
2

0

c
2

c

y

we have

P (X + 2Y < c) =

∫ ∞
−∞

(∫ c−x
2

−∞
fX,Y (x, y) dy

)
dx

=

∫ ∞
−∞

(∫ c−2y

−∞
fX,Y (x, y) dx

)
dy

(1.14)
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For a more explicit demonstration of why this works, con-
sult your notes from Multivariable Calculus (specifically Fu-
bini’s theorem) and/or Probability and/or http://ccrg.rit.

edu/~whelan/courses/2013_1sp_1016_345/notes05.pdf

As an example, consider the joint pdf

f(x, y) =

{
e−x−y 0 < x <∞, 0 < y <∞
0 otherwise

(1.15)

and the event X < 2Y . The region over which we need to
integrate is x > 0, y > 0, x < 2y:

0 1 2
x

0

1

2

y

If we do the y integral first, the limits will be set by x/2 < y <
∞, and if we do the x integral first, they will be 0 < x < 2y.
Doing the y integral first will give us a contribution from only
one end of the integral, so let’s do it that way.

P (X < 2Y ) =

∫ ∞
0

∫ ∞
x/2

e−x−y dy dx =

∫ ∞
0

e−x
[
−e−y

]∞
x/2

dx

=

∫ ∞
0

e−xe−x/2 dx =

∫ ∞
0

e−3x/2 dx = −2

3
e−3x/2

∣∣∣∣∞
0

=
2

3
(1.16)

1.2 Marginalization

One of the events we can define given the probability distribution
for two random variables X and Y is X = x for some value
x. In the case of a pair of discrete random variables, this is
P (X = x) =

∑
y pX,Y (x, y) But of course, P (X = x) is just the

pmf of X; we call this the marginal pmf pX(x) and define

pX(x) = P (X = x) =
∑
y

pX,Y (x, y) (1.17)

pX(y) = P (Y = y) =
∑
x

pX,Y (x, y) (1.18)

(1.19)

Returning to our coin-flip example, we can write the
marginal pmfs for X and Y in the margins of the table:

y
pX,Y (x, y) 0 1 2 3 pX(x)

x

0 0 0 0 1/8 1/8
1 1/8 1/8 1/8 0 3/8
2 2/8 1/8 0 0 3/8
3 1/8 0 0 0 1/8
pY (y) 4/8 2/8 1/8 1/8

For a pair of continuous random variables, we know that
P (X = x) = 0 but we can find the marginal cdf

FX(x) = P (X ≤ x) =

∫ x

−∞

(∫ ∞
−∞

fX,Y (t, y) dy

)
dt (1.20)

and then take the derivative to get the marginal pdf

fX(x) = F ′X(x) =

∫ ∞
−∞

fX,Y (x, y) dy (1.21)

and likewise

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx (1.22)
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The act of summing or integrating over arguments we don’t
care about, in order to get a marginal probability distribution,
is called marginalizing.

Thursday 10 September 2015
– Read Section 2.2 of Hogg

1.3 Expectation Values

We can define the expectation value of a function of two discrete
random variables in the straightforward way

E[g(X1, X2)] =
∑
x1,x2

g(x1, x2) p(x1, x2) (1.23)

and for two continuous random variables

E[g(X1, X2)] =

∫ ∞
−∞

∫ ∞
−∞

g(x1, x2) f(x1, x2) dx1 dx2 (1.24)

In each case, we only consider the expectation value to be de-
fined if the relevant sum or integral converges absolutely, i.e.,
if E(|g(X1, X2)|) < ∞. Note that the expectation value is still
linear, i.e.,

E[k1g1(X1, X2)+k2g2(X1, X2)] = k1E[g1(X1, X2)]+k2E[g2(X1, X2)]
(1.25)

1.3.1 Moment Generating Function

In the case of a pair of random variables, we can define the mgf
as

M(t1, t2) = E
(
et1X1+t2X2

)
= E

[
exp

{(
t1
t2

)′(
X1

X2

)}]
= E

(
et

TX
)

(1.26)

where tT is the transpose of the column vector t.

We can get the mgf for each of the random variables from the
joint mgf

MX1(t1) = MX1,X2(t1, 0) and MX2(t2) = MX1,X2(0, t2)
(1.27)

We’ll actually mostly use the mgf as an easy way to identify the
distribution, but it can also be used to generate moments in the
usual way:

E[X1
m1X2

m2 ] =
∂m1+m2

∂m1t1∂m2t2
M(t1, t2)

∣∣∣∣
(t1,t2)=(0,0)

(1.28)

1.4 Transformations

We turn now to the question of how to transform the joint dis-
tribution function under a change of variables. In order for the
distribution of Y1 = u1(X1, X2) and Y2 = u2(X1, X2) to carry the
same information as the distribution of X1 and X2, the transfor-
mation should be invertable over the space of possible X1 and
X2 values, i.e., we should be able to write X1 = w1(Y1, Y2) and
X2 = w2(Y1, Y2).

1.4.1 Transformation of Discrete RVs

For the case of a pair of discrete random variables, things are
very straightforward, since

pY1,Y2(y1, y2) = P ([Y1 = y1] ∩ [Y2 = y2])

= P ([u1(X1, X2) = y1] ∩ [u2(X1, X2) = y2])

= P ([X1 = w1(Y1, Y2)] ∩ [X2 = w2(Y1, Y2)])

= pX1,X2(w1(y1, y2), w2(y1, y2))

(1.29)
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For example, suppose

pX1,X2(x1, x2) =

{(
1
2

)x1+x2 x1 = 0, 1, 2, . . . ; x2 = 0, 1, 2, . . .

0 otherwise

(1.30)
If we define Y1 = X1+X2 and Y2 = X1−X2 then X1 = Y1+Y2

2
and

X2 = Y1−Y2
2

. The only tricky part is figuring out the allowed set
of values for Y1 and Y2. We note that y1+y2

2
≥ 0 and y1−y2

2
≥ 0

imply that, for a given y1, −y1 ≤ y2 ≤ y1. That’s not quite
the whole story, though, since y1+y2

2
and y1−y2

2
also have to be

integers, so if y1 is odd, y2 must be odd, and if y1 is even, y2

must be even. It’s easiest to see what combinations are allowed
by building a table for the first few values:

x2

(y1, y2) 0 1 2 3 · · ·

x1

0 (0, 0) (1,−1) (2,−2) (3,−3) · · ·
1 (1, 1) (2, 0) (3,−1) (4,−2)
2 (2, 2) (3, 1) (4, 0) (5,−1)
3 (3, 3) (4, 2) (5, 1) (6, 0)
...

...
. . .

So evidently y1 can be any non-negative integer, and the possible
values for y2 count by twos from −y1 to y1.

pY1,Y2(y1, y2) =


(

1
2

)y1 y1 = 0, 1, 2, . . .;
y2 = −y1,−y1 + 2, . . . , y1 − 2, y1

0 otherwise

(1.31)

1.4.2 Transformation of Continuous RVs

For the case of the transformation of continuous random vari-
ables we have to deal with the fact that fX1,X2(x1, x2) and

fY1,Y2(y1, y2) are probability densities and the volume (area) el-
ement has to be transformed from one set of variables to the
other. If we write fX1,X2(x1, x2) ∼ d2P

dx1dx2
and fY1,Y2(y1, y2) ∼

d2P
dy1dy2

, the transformation we’ll need is

d2P

dy1dy2

∼
∣∣∣∣det

∂(x1, x2)

∂(y1, y2)

∣∣∣∣ d2P

dx1dx2

(1.32)

where we use the determinant of the Jacobian matrix

∂(y1, y2)

∂(x1, x2)
=

(
∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

)
(1.33)

which may be familiar from the transformation of the volume
element

dy1 dy2 =

∣∣∣∣det
∂(y1, y2)

∂(x1, x2)

∣∣∣∣ dx1 dx2 (1.34)

if we change variables in a double integral.

To get a concrete handle on this, consider an example. Let X
and Y be continuous random variables with a joint pdf

fX,Y (x, y) =

{
4
π
e−x

2−y2 0 < x <∞; 0 < y <∞
0 otherwise

(1.35)

If we want to calculate the probability that X2 + Y 2 < a2 we
have to integrate over the part of this disc which lies in the first
quadrant x > 0, y > 0 (where the pdf is non-zero):
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0 a
x

0

a

y

The limits of the x integral are determined by 0 < x and x2 +
y2 < a, i.e., x <

√
a2 − y2; the range of y values represented

can be seen from the figure to be 0 < y < a, so we can write the
probability as

P (X2 + Y 2 < a2) =

∫ a

0

∫ √a2−y2

0

4

π
e−x

2−y2dx dy (1.36)

but we can’t really do the integral in this form. However, if we
define random variables R =

√
X2 + Y 2 and1 Φ = tan−1(Y /X),

so that X = R cos Φ and Y = R sin Φ, we can write the proba-
bility as

P (X2 +Y 2<a2) = P (R<a) =

∫ π/2

0

∫ a

0

fR,Φ(r, φ) dr dφ (1.38)

if we have the transformed pdf fR,Φ(r, φ). On the other hand, we
know that we can write the volume element dx dy = r dr dφ. We

1Note that we can only get away with using the arctangent tan−1(y/x)
as an expression for φ because x and y are both positive. In general, we
need to be careful; (x, y) = (−1,−1) corresponds to φ = −3π/4 even though
tan−1([−1]/[−1]) = tan−1(1) = π/4 if we use the principal branch of the
arctangent. For a general point in the (x, y) plane, we’d need to use the

can get this either from geometry in this case, or more generally
by differentiating the transformation(

x
y

)
=

(
r cosφ
r sinφ

)
(1.39)

to get(
dx
dy

)
=

(
cosφ dr − r sinφ dφ
sinφ dr + r cosφ dφ

)
=

(
cosφ −r sinφ
sinφ r cosφ

)(
dr
dφ

)
(1.40)

and taking the determinant of the Jacobian matrix:

det
∂(x, y)

∂(r, φ)
=

∣∣∣∣cosφ −r sinφ
sinφ r cosφ

∣∣∣∣ = r cos2 φ+ r sin2 φ = r (1.41)

so the volume element transforms like

dx dy =

∣∣∣∣det
∂(x, y)

∂(r, φ)

∣∣∣∣ dr dφ = r dr dφ (1.42)

Even if we knew nothing about the transformation of random
variables, we could use this to change variables in the integral
(1.36) to get∫ a

0

∫ √a2−y2

0

4

π
e−x

2−y2dx dy =

∫ π/2

0

∫ a

0

4

π
e−r

2

r dr dφ (1.43)

function

atan2(y, x) =



tan−1(y/x)− π x < 0 and y < 0

−π/2 x = 0 and y < 0

tan−1(y/x) x > 0

π/2 x = 0 and y > 0

tan−1(y/x) + π x < 0 and y ≥ 0

(1.37)

φ = atan2(y, x) to get the correct φ ∈ [−π, π).
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If we compare the integrands of (1.43) and (1.43) we can see
that the transformed pdf must be

fR,Φ(r, φ) =

{
r e−r

2
0 < r <∞; 0 < φ < π/2

0 otherwise
(1.44)

Incidentally, we can calculate the probability as

P (R < a) =

∫ π/2

0

∫ a

0

4

π
e−r

2

r dr dφ =

∫ a

0

e−r
2

2r dr = − e−r2
∣∣∣a
0

= 1− e−a2

(1.45)

To return to the general case, we see there are basically two
things to worry about: one is the Jacobian determinant relating
the volume elements in the two sets of variables, and the other is
transforming the ranges of variables used to describe the event,
as well as the allowed range of variables. In general terms, if
S is the support of the random variables X1 and X2, i.e., the
smallest region of R2 such that P [(X1, X2) ∈ S] = 1 and T is
the support of Y1 and Y2, we need a transformation of the pdf
fX1,X2(x1, x2) defined on S such that

P [(X1, X2) ∈ A] =
x

A

fX1,X2(x1, x2) dx1 dx2

=
x

B

fY1,Y2(y1, y2) dy1 dy2 = P [(Y1, Y2) ∈ B] (1.46)

where B is the image of A under the transformation, i.e.,
(x1, x2) ∈ A is equivalent to {u1(x1, x2), u2(x1, x2)} ∈ B. Since

a change of variables in the integral gives us

x

A

fX1,X2(x1, x2) dx1 dx2

=
x

B

fX1,X2(w1(y1, y2), w2(y1, y2))

∣∣∣∣det
∂(x1, x2)

∂(y1, y2)

∣∣∣∣ dy1 dy2

(1.47)

we must have, in general,

fY1,Y2(y1, y2) =

∣∣∣∣det
∂(x1, x2)

∂(y1, y2)

∣∣∣∣ fX1,X2(w1(y1, y2), w2(y1, y2))

(y1, y2) ∈ T (1.48)

which is the more careful way of writing the easier-to-remember
formula we started with:

d2P

dy1dy2

∼
∣∣∣∣det

∂(x1, x2)

∂(y1, y2)

∣∣∣∣ d2P

dx1dx2

(1.49)

Tuesday 15 September 2015
– Read Section 2.3 of Hogg

2 Conditional Distributions

2.1 Conditional Probability

Recall the definition of conditional probability: for events C1

and C2, P (C2|C1) is the probability of C2 given C1. If we recall
that P (C) is the fraction of repeated experiments in which C
is true, we can think of P (C2|C1) as follows: restrict attention
to those experiments in which C1 is true, and take the fraction
in which C2 is also true. This conceptual definition leads to the

9



mathematical definition

P (C2|C1) =
P (C1 ∩ C2)

P (C1)
(2.1)

A consequence of this definition is the multiplication rule for
probabilities,

P (C1 ∩ C2) = P (C2|C1)P (C1) (2.2)

This means that the probability of C1 and C2 is the probability
of C1 times the probability of C2 given C1, which makes logical
sense. In fact, since one often has easier access to conditional
probabilities in the first place, you could start with the definition
of P (C2|C1) as the probability of C2 assuming C1, and then
use the multiplication rule (2.2) as one of the basic tenets of
probability. An extreme expression of this philosophy says that
all probabilities are conditional probabilities, since you have to
assume something about a model to calculate them.2

One simple consequence of the multiplication rule is that we
can write P (C1 ∩ C2) two different ways:

P (C1|C2)P (C2) = P (C1 ∩ C2) = P (C2|C1)P (C1) (2.3)

dividing by P (C2) gives us Bayes’s theorem

P (C1|C2) =
P (C2|C1)P (C1)

P (C1)
(2.4)

which is useful if you want to calculate conditional probabilities
with one condition when you know them with another condition.

2See E. T. Jaynes. Probability Theory: The Logic of Science for this
approach.

2.2 Conditional Probability Distributions

Given a pair of discrete random variables X1 and X2 with joint
pmf pX1,X2(x1, x2), we can define in a straightforward way the
conditional probability that X2 takes on a value given a value
for X1:

pX2|X1(x2, x1) = P (X1 = x1|X2 = x2) =
pX1,X2(x1, x2)

pX1(x1)
(2.5)

where we’ve used the marginal pmf

pX1(x1) =
∑
x2

pX1,X2(x1, x2) (2.6)

We often write p2|1(x2|x1) as a shorthand for pX2|X1(x2|x1). Note
that conditional probability distributions are normalized just
like ordinary ones:

∑
x2

p2|1(x2|x1) =
∑
x2

p(x1, x2)

p1(x1)
=

∑
x2
p(x1, x2)

p1(x1)
=
p1(x1)

p1(x1)
= 1

(2.7)

If we have a pair of continuous random variables with joint
pdf fX1,X2(x1, x2), we’d like to similarly define

f2|1(x2|x1) = lim
ξ↓0

P (x1 − ξ < X1 ≤ x1|X2 = x2) (2.8)

But there’s a problem: since X2 is a continuous random variable,
P (X2 = x2) = 0, which means we can’t divide by it. So instead,
we have to definite it as

f2|1(x2|x1) = lim
ξ1↓0
ξ2↓0

= P (x1−ξ1<X1≤x1|x2+ξ2<X2≤x2) =
f(x1, x2)

f1(x1)
,

(2.9)
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where f1(x1) =
∫∞
−∞ f(x1, x2) dx2 is the marginal pdf. Again,

the conditional pdf is properly normalized:∫ ∞
−∞

f2|1(x2|x1) dx2 =

∫∞
−∞ f(x1, x2) dx2

f1(x1)
=
f1(x1)

f1(x1)
= 1 (2.10)

Note that f2|1(x2|x1) is a density in x2, not in x1. This is also
important in the continuous equivalent of Bayes’s theorem:

f1|2(x1|x2) =
f2|1(x2|x1)f1(x1)

f2(x2)
. (2.11)

2.2.1 Example

Consider continuous random variables X1 and X2 with joint pdf

f(x1, x2) = 6x2, 0 < x2 < x1 < 1 (2.12)

The marginal pdf for x1 is

f1(x1) =

∫ x1

0

6x2 dx2 = 3x2
1, 0 < x1 < 1 (2.13)

so the conditional pdf is

f2|1(x2|x1) =
f(x1, x2)

f1(x1)
= 2

x2

x2
1

, 0 < x2 < x1 < 1 (2.14)

which we can see is normalized:∫ ∞
−∞

f2|1(x2|x1) dx2 =

∫ x1

0

2
x2

x2
1

dx2 =
x2

1

x2
1

= 1 (2.15)

2.2.2 Conditional Expectations

Since conditional pdfs or pmfs are just like regular probability
distributions, you can also use them to define expectation values.

For discrete random variables X1 and X2 we can define

E(u(X2)|X1 = x1) = E(u(X2)|x1) =
∑
x2

u(x2)p2|1(x2|x1)

if
∑
x2

|u(x2)| p2|1(x2|x1) <∞ (2.16)

and for continuous:

E(u(X2)|X1 = x1) = E(u(X2)|x1) =

∫ ∞
−∞

u(x2)p2|1(x2|x1) dx2

if

∫ ∞
−∞
|u(x2)| p2|1(x2|x1) dx2 <∞ (2.17)

This is still a linear operation, so

E(k1u1(X2) + k2u2(X2)|x1) = k1E(u1(X2)|x1) + E(u2(X2)|x1)
(2.18)

We can define a conditional variance by analogy to the usual
variance:

Var(X2|x1) = E{[X2 − E(X2|x1)]2|x1} (2.19)

and since the conditional expectation value is linear, we have
the usual shortcut

Var(X2|x1) = E(X2
2|x1)2− [E(X2|x1)]2 (2.20)

Returning to our example, in which f2|1(x2|x1) = 2x2
x21

, 0 <

x2 < x1 < 1, we have

E(X2|x1) =

∫ x1

0

x2 2
x2

x2
1

dx2 =
2

3
x1 (2.21)

and

E(X2
2|x1) =

∫ x1

0

x2
2 2
x2

x2
1

dx2 =
1

2
x2

1 (2.22)
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so

Var(X2|x1) =
1

2
x2

1 −
(

2

3
x1

)2

=
x2

1

18
. (2.23)

Note that E(X2|x1) is a function of x1 and not a random
variable. But we can insert the random variable X1 into that
function, and define a random variable E(X2|X1) which is equal
to E(X2|x1) when X1 = x1. This random variable can also be
written

E(X2|X1) =

∫ ∞
−∞

x2f2|1(X1, x2) dx2 (2.24)

Note that

E[E(X2|X1)] =

∫ ∞
−∞

E(X2|x1)f1(x1) dx1

=

∫ ∞
−∞

∫ ∞
−∞

x2 f2|1(x2|x1)f1(x1) dx2 dx1

=

∫ ∞
−∞

∫ ∞
−∞

x2 f(x1, x2) dx2 dx1 = E[X2]

(2.25)

So E(X2|X1) is an estimator of E(X2). It can be shown that

Var[E(X2|X1)] ≤ Var(X2) (2.26)

so E(X2|X1) is potentially a better estimator of the mean E(X2)
than X2 itself is. (This isn’t exactly a practical procedure,
though, since to evaluate the function E(X2|x1) you need the
conditional probability density f2|1(x2|x1) for all possible x2.)

In our specific example, since E(X2|x1) = 2
3
x1, E(X2|X1) =

2
3
X1. We can work out

E[E(X2|x1)] = E

(
2

3
X1

)
=

∫ ∞
−∞

2

3
x1f1(x1) dx1

=

∫ 1

0

2

3
x1(3x2

1) dx1 =
1

2

(2.27)

and

E[{E(X2|X1)}2] = E

(
4

9
X1

2

)
=

∫ ∞
−∞

4

9
x2

1f1(x1) dx1

=

∫ 1

0

4

9
x2

1(3x2
1) dx1 =

4

15

(2.28)

so that

Var[E(X2|X1)] =
4

15
− 1

4
=

16− 15

60
=

1

60
(2.29)

To get E(X2) and Var(X2) we need the marginal pdf

f2(x2) =

∫ 1

x2

6x2 dx1 = 6x2(1− x2), 0 < x2 < 1 (2.30)

from which we calculate

E(X2) =

∫ 1

0

(x2)6x2(1− x2) dx2 = 6

(
1

3
− 1

4

)
=

6

12
=

1

2
(2.31)

and

E(X2
2) =

∫ 1

0

(x2
2)6x2(1− x2) dx2 = 6

(
1

4
− 1

5

)
=

6

20
=

3

10
(2.32)

so

Var(X2) =
3

10
− 1

4
=

6− 5

20
=

1

20
(2.33)

from which we can verify that in this case

E(X2|X1) =
1

2
= E(X2) (2.34)

and

Var[E(X2|X1)] =
1

60
≤ 1

20
≤ Var(X2) (2.35)
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Thursday 17 September 2015
– Read Sections 2.4-2.5 of Hogg

2.3 Independence

Recall conditional distribution for discrete rvs X1 and X2

p2|1(x2|x1) = P (X1 = x1|X2 = x2)

=
P ([X1 = x1] ∩ [X2 = x2])

P (X1 = x1)
=
p(x1, x2)

p(x1)

(2.36)

or for continuous rvs X1 and X2

f2|1(x2|x1) =
f(x1, x2)

f(x1)
(2.37)

Consider the example

f(x1, x2) = 6x1x
2
2 0 < x1 < 1, 0 < x2 < 1 (2.38)

The marginal pdf for X1 is

f1(x1) =

∫ 1

0

6x1x
2
2 dx2 = 2x1 (2.39)

which makes the conditional pdf

f2|1(x2|x1) =
6x1x

2
2

2x1

= 3x2
2 0 < x1 < 1, 0 < x2 < 1 (2.40)

Note that in this case f2|1(x2|x1) doesn’t actually depend on x1,
as long as x1 is in the support of the random variable X1. This
situation is called independence. In fact, it’s easy to show that
in this situation f2|1(x2|x1) = f2(x2), i.e., the conditional pdf for
X2 given any possible value of X1 is the marginal pdf for X2:

f2(x2) =

∫ ∞
−∞

f(x1, x2) dx1 =

∫ ∞
−∞

f2|1(x2|x1) f1(x1) dx1

= f2|1(x2|x1)

∫ ∞
−∞

f1(x1) dx1 = f2|1(x2|x1) (X1 & X2 indep.)

(2.41)

where we can pull f2|1(x2|x1) out of the x1 integral because it
doesn’t actually depend on x1, and we use the fact that the
marginal pdf f1(x1) is normalized. We thus have the definition

(X1 & X2 independent) ≡
(
f2|1(x2|x1) = f2(x2) for all (x1, x2) ∈ S

)
(2.42)

This is not the most symmetric definition, and it’s not imme-
diately obvious that f2|1(x2|x1) = f2(x2) implies f1|2(x1|x2) =
f1(x1). But it does because of the following result

(X1 & X2 independent) iff f(x1, x2) = f1(x1)f2(x2) for all (x1, x2)
(2.43)

(We don’t need to specify (x1, x2) ∈ S because we can think
of f1(x1) and f2(x2) as being equal to zero if their arguments
are outside their respective support spaces.) It’s easy enough
to demonstrate (2.43). If we assume f(x1, x2) = f1(x1)f2(x2),

then f2|1(x2|x1) = f1(x1)f2(x2)
f1(x1)

= f2(x2) as long as f1(x1) 6= 0.

Conversely, if we assume f2|1(x2|x1) = f2(x2), then f(x1, x2) =
f2|1(x2|x1)f1(x1) = f1(x1)f2(x2).

If X1 and X2 are not independent, we call them dependent
random variables. We can consider a couple of examples of
dependent rvs:

2.3.1 Dependent rv example #1

First, let

f(x1, x2) =

{
x1 + x2 0 < x1 < 1, 0 < x2 < 1

0 otherwise
(2.44)

Then

f1(x1) =

∫ 1

0

(x1 + x2) dx2 = x1 +
1

2
0 < x1 < 1 (2.45)
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and

f2|1(x2|x1) =
x1 + x2

x1 + 1
2

0 < x1 < 1, 0 < x2 < 1 (2.46)

which does depend on x1, so X1 and X2 are dependent.

2.3.2 Dependent rv example #1

Second, return to our example from Tuesday, where

f(x1, x2) = 6x2, 0 < x2 < x1 < 1 (2.47)

and we saw

f2|1(x2|x1) = 2
x2

x2
1

, 0 < x2 < x1 < 1 (2.48)

again, this depends on x1, so X1 and X2 are dependent.

2.3.3 Factoring the joint pdf

We don’t have to calculate the conditional pdf to tell whether
random variables are dependent or independent. We can show
that

(X1 & X2 independent) iff f(x1, x2) = g(x1)h(x2) for all (x1, x2)
(2.49)

for some functions g and h. The “only if” part is trivial; choose
g(x1) = f1(x1) and h(x2) = f2(x2). We can show the “if” part
by assuming a factored form and working out

f1(x1) =

∫ ∞
−∞

g(x1)h(x2) dx2 = g(x1)

∫ ∞
−∞

h(x2) dx2 (2.50)

The integral
∫∞
−∞ h(x2) dx2 is just a constant, which we can call

c, so we have g(x1) = f1(x1)/c and f(x1, x2) = f1(x1)h(x2)/c.
Then we take

f2(x2) =
h(x2)

c

∫ ∞
−∞

f1(x1) dx1 =
h(x2)

c
(2.51)

which means that indeed f(x1, x2) = f1(x1)f2(x2).
Our two examples show ways in which the joint pdf can fail

to factor. In (2.44), x1 + x2 can obviously not be written as a
product of g(x1) and g(x2). In (2.47), it’s a little trickier, since
it seems like we could write 6x1 = (6x1)(1). But the problem is
the support of (2.47). If we took, for example,

g(x1) =

{
6x1 0 < x1 < 1

0 otherwise
(2.52)

and

h(x2) =

{
1 0 < x2 < 1

0 otherwise
(2.53)

we’d end up with

g(x1)h(x2) =

{
6x1 0 < x1 < 1, 0 < x2 < 1

0 otherwise
(2.54)

which is not the same as the f(x1, x2) given in (2.47). In general,
for the factorization to work, the support of X1 and X2 has to
be a product space, i.e., the intersection of a range of possible x1

values with no reference to x2 and a range of possible x2 values
with no reference to x1. Some examples of product spaces are

• 0 < x1 < 1, 0 < x2 < 1

• −1 < x1 < 1, 0 < x2 < 2

• 0 < x1 <∞, −∞ < x2 <∞
• 0 < x1 <∞, 0 < x2 < 1

some examples of non-product spaces are

• 0 < x2 < x1 < 1

• 0 < x1 < x2 <∞
• x2

1 + x2
2 < 1
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2.3.4 Expectation Values

Finally we consider an important result related to expectation
values. Let X1 and X2 be independent random variables. Then
the expectation value of the product of a function of each ran-
dom variables is the product of their expectation values:

E[u1(X1)u2(X2)] =

∫ ∞
−∞

∫ ∞
−∞

u1(x1)u2(x2) f1(x1)f2(x2) dx1 dx2

=

(∫ ∞
−∞

u1(x1) f1(x1) dx1

)(∫ ∞
−∞

u2(x2) f2(x2) dx2

)
= E[u1(X1)]E[u2(X2)] (X1 & X2 indep.) (2.55)

In particular, the joint mgf is such an expectation value, so

M(t1, t2) = E
(
et1X1+t2X2

)
= E

(
et1X1

)
E
(
et2X2

)
= M1(t1)M2(t2)

= M(t1, 0)M(0, t2) (X1 & X2 indep.)

(2.56)

It takes a little more work, but you can also prove the converse
(see Hogg for details) so

(X1 & X2 independent) iff M(t1, t2) = M(t1, 0)M(0, t2)
(2.57)

You showed on the homework that in a particular case
M(t1, 0)M(0, t2) 6= M(t1, t2); in that case the random variables
were dependent because their support was not a product space.

3 Covariance and Correlation

Recall the definitions of the means

µX = E(X) and µY = E(Y ) (3.1)

and variances

σ2
X = Var(X) = E([X − µX ]2) (3.2a)

σ2
Y = Var(Y ) = E([Y − µY ]2) (3.2b)

We can define the covariance

Cov(X,Y ) = E([X − µX ][Y − µY ]) (3.3)

Dimensionally, µX and σX have units of X, µY and σY have
units of Y , and the covariance Cov(X,Y ) has units of XY . It’s
useful to define a dimensionless quantity called the Correlation
Coëfficient :

ρ =
Cov(X,Y )

σXσY
(3.4)

On the homework you will show that −1 ≤ ρ ≤ 1.

One important result about independent random variables is
that they are uncorrelated. If X and Y are independent, then

Cov(X,Y ) = E([X − µX ][Y − µY ]) = E(X − µX)E(Y − µY )

= (µX − µX)(µY − µY ) = 0 (X & Y indep.) (3.5)

On the other hand, the converse is not true: it is still possible
for the covariance of dependent variables to be zero.

Tuesday 22 September 2015
– Read Section 2.6 of Hogg

4 Generalization to Several RVs

Note: this week’s material will not be included on Prelim Exam
One.
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4.1 Linear Algebra: Reminders and Notation

If A is an m× n matrix:

A =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn

 (4.1)

and B is an n× p matrix,

B =


B11 B12 · · · B1p

B21 B22 · · · B2p
...

...
. . .

...
Bn1 Bn2 · · · Bnp

 (4.2)

then their product C = AB is an m × p matrix as shown in
Figure 1 so that Cik =

∑n
j=1 AijBjk.

If A is an m × n matrix, B = AT is an n × m matrix with
elements Bij = Aji:


B11 B12 · · · B1m

B21 B22 · · · B2m
...

...
. . .

...
Bn1 Bn2 · · · Bnm

 = B = AT =


A11 A21 · · · Am1

A12 A22 · · · Am2
...

...
. . .

...
A1n A2n · · · Amn


(4.4)

If v is an n-element column vector (which is an n× 1 matrix)
and A is an m × n matrix, w = Av is an m-element column

vector (i.e., an m× 1 matrix):


w1

w2
...
wm

 = w = Av =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn



v1

v2
...
vn



=


A11v1 + A12v2 + · · ·+ A1nvn
A21v1 + A22v2 + · · ·+ A2nvn

...
Am1v1 + Am2v2 + · · ·+ Amnvn


(4.5)

so that wi =
∑n

j=1 Aijvj.

If u is an n-element column vector, then uT is an n-element
row vector (a 1× n matrix):

uT =
(
u1 u2 · · · un

)
(4.6)

If u and v are n-element column vectors, uTv is a number,
known as the inner product :

uTv =
(
u1 u2 · · · un

)

v1

v2
...
vn


= u1v1 + u2v2 + · · ·+ unvn =

n∑
i=1

uivi

(4.7)

If v is an m-element column vector, and w is an n-element
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C = AB =


C11 C12 · · · C1p

C21 C22 · · · C2p
...

...
. . .

...
Cm1 Cm2 · · · Cmp

 =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn



B11 B12 · · · B1p

B21 B22 · · · B2p
...

...
. . .

...
Bn1 Bn2 · · · Bnp



=


A11B11 + A12B21 + · · ·+ A1nBn1 A11B12 + A12B22 + · · ·+ A1nBn2 · · · A11B1p + A12B2p + · · ·+ A1nBnp

A21B11 + A22B21 + · · ·+ A2nBn1 A21B12 + A22B22 + · · ·+ A2nBn2 · · · A21B1p + A22B2p + · · ·+ A2nBnp
...

...
. . .

...
Am1B11 + Am2B21 + · · ·+ AmnBn1 Am1B12 + Am2B22 + · · ·+ AmnBn2 · · · Am1B1p + Am2B2p + · · ·+ AmnBnp


(4.3)

Figure 1: Expansion of the product C = AB to show Cik =
∑n

j=1 AijBjk.

column vector, A = vwT is an m× n matrix


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn

 = A = vwT

=


v1

v2
...
vm

(w1 w2 · · · wm
)

=


v1w1 v1w2 · · · v1wn
v2w1 v2w2 · · · v2wn

...
...

. . .
...

vmw1 vmw2 · · · vmwn


(4.8)

so that Aij = viwj.

If M and N are n× n matrices, the determinant det(MN) =
det(M) det(N).

If M is an n×n matrix (known as a square matrix), the inverse
matrix M−1 is defined by M−1M = 1n×n = MM−1 where 1n×n

is the identity matrix

1n×n =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 (4.9)

If M−1 exists, we say M is invertible.
If M is a real, symmetric n × n matrix, so that MT = M,

i.e., Mji = Mij, there is a set of n orthonormal eigenvectors
{v1,v2, . . . ,vn} with real eigenvalues {λ1, λ2, . . . , λn}, so that
Mvi = λivi. Orthonormal means

vT
i vj = δij =

{
0 i 6= j

1 i = j
(4.10)

where we have introduced the Kronecker delta symbol δij. The
eigenvalue decomposition means

M =
n∑
i=1

λiviv
T
i (4.11)
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The determinant is det(M) =
∏n

i=1 λi. If none of the eigenvalues
{λi} are zero, M is invertible, and the inverse matrix is

M−1 =
n∑
i=1

1

λi
viv

T
i (4.12)

If all of the eigenvalues {λi} are positive, we say M is positive
definite. If none of the eigenvalues {λi} are negative, we say M
is positive semi-definite. Note that these conditions are equiv-
alent to the more common definition: M is positive definite if
vTMv > 0 for any non-zero n-element column vector v and
positive semi-definite if vTMv ≥ 0 for any n-element column
vector v.

4.2 Multivariate Probability Distributions

Many of the definitions which we considered in detail for the case
of two random variables generalize in a straightforward way to
the case of n random variables. It’s notationally convenient to
use the concept of a random vector X as in (1.1), so for example,
the joint cdf is

FX(x) = P ([X1 ≤ x1] ∩ [X2 ≤ x2] ∩ · · · ∩ [Xn ≤ xn]) (4.13)

In the discrete case, the joint pmf is

pX(x) = P ([X1 = x1] ∩ [X2 = x2] ∩ · · · ∩ [Xn = xn]) (4.14)

while in the continuous case the joint pdf is

fX(x) =
∂n

∂x1 · · · ∂xn
FX(x)

= lim
ξ1↓0

...
ξn↓0

P ([x1 − ξ1 <X1 ≤ x1] ∩ · · · ∩ [xn − ξn <Xn ≤ xn])

ξ1 · · · ξn

(4.15)

The probability for the random vector X to lie in some region
A ⊂ Rn is

P (X ∈ A) =

∫
· · ·
∫

A

fX(x) dx1 · · · dxn (4.16)

4.2.1 Marginal and Conditional Distributions

One place where the multivariate case can be more complicated
than the bivariate one is marginalization. Given a joint distri-
bution n random variables, you can in principle marginalize over
m of them, and be left with a marginal distribution for the re-
maining n −m variables. To give a concrete example, consider
three random variables {Xi|i = 1, 2, 3} with joint pdf

fX(x) =

{
6 0 < x1 < x2 < x3 < 1

0 otherwise
(4.17)

We can marginalize over X3, which gives us a pdf for X1 and
X2 (i.e., still a joint pdf);

fX1X2(x1, x2) =

∫ ∞
−∞

fX1X2X3(x1, x2, x3) dx3 =

∫ 1

x2

6 dx3

=

{
6(1− x2) 0 < x1 < x2 < 1

0 otherwise

(4.18)

by similar calculations, we can marginalize over X2 to get

fX1X3(x1, x3) =

∫ ∞
−∞

fX1X2X3(x1, x2, x3) dx2 =

∫ x3

x1

6 dx2

=

{
6(x3 − x1) 0 < x1 < x3 < 1

0 otherwise

(4.19)
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or over X1 to get

fX2X3(x2, x3) =

∫ ∞
−∞

fX1X2X3(x1, x2, x3) dx1 =

∫ x2

0

6 dx1

=

{
6x2 0 < x2 < x3 < 1

0 otherwise

(4.20)

If we want the marginal distribution for X1, we marginalize over
both X2 and X3:

fX1(x1) =

∫ ∞
−∞

∫ ∞
−∞

fX1X2X3(x1, x2, x3) dx2 dx3

=

∫ ∞
−∞

fX1X2(x1, x2) dx2 =

∫ 1

x1

6(1− x2) dx2

= −3 (1− x2)2
∣∣x2=1

x2=x1
= 3(1− x1)2 0 < x1 < 1

(4.21)

of course, if we marginalize in the other order, we get the same
result:

fX1(x1) =

∫ ∞
−∞

fX1X3(x1, x3) dx3 =

∫ 1

x1

6(x3 − x1) dx3

= 3 (x3 − x1)2
∣∣x3=1

x3=x1
= 3(1− x1)2 0 < x1 < 1

(4.22)

Similarly, we can marginalize over X1 and X3 to get

fX2(x2) =

∫ 1

x2

6x2 dx3 = 6x2(1− x2) 0 < x2 < 1 (4.23)

and

fX3(x3) =

∫ x3

0

6x2 dx2 = 3x2
3 0 < x3 < 1 (4.24)

The various joint and marginal distributions can be combined
into conditional distributions such as

f13|2(x1, x3|x2) =
f123(x1, x2, x3)

f2(x2)
=

1

x2(1− x2)
0 < x1 < x2 < x3 < 1

(4.25)
and

f1|23(x1|x2, x3) =
f123(x1, x2, x3)

f23(x2, x3)
=

1

x2

0 < x1 < x2 < x3 < 1

(4.26)
and

f1|2(x1|x2) =
f12(x1, x2)

f2(x2)
=

1

x2

0 < x1 < x2 < 1 (4.27)

4.2.2 Mutual vs Pairwise Independence

The notion of independence carries over to multivariate distribu-
tions as well. We say that a set of n random variables X1, . . . , Xn

are mutually independent if we can write

f(x1, x2, . . . , xn) = f1(x1) f2(x2) · · · fn(xn) (4.28)

for all x.3 You can show straightforwardly that this implies
fij(xi, xj) = fi(xi) fj(xj) for each i and j, i.e., any pair of the
random variables is independent. This is known as pairwise
independence. However, pairwise independence doesn’t imply
mutual independence of the whole set. There is a simple coun-
terexample from S. N. Bernstein4 Suppose you have a tetrahe-
dron (fair four-sided die) on which one face is painted all black,

3Except possibly at some points whose total probability is zero.
4Hogg doesn’t actually give the Bernstein reference, just says this is

“attributed” to him. The original reference is to a book from 1946 which is
in Russian. But there is a more recent summary in Stȩpniak, The College
Mathematics Journal 38, 140-142 (2007), which is available at http://

www.jstor.org/stable/27646450 if you’re on campus and http://www.

jstor.org.ezproxy.rit.edu/stable/27646450 if you’re not.
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one all blue, one all red, and one painted with all three colors.
Throw it and note the color or colors of the face it lands on.
Define X1 to be 1 if the face landed on is at least partly black,
0 if it isn’t, X2 to be 1 if the face is at least partly blue and 0 if
not, and X3 to be 1 if the face is part or all red, 0 if not. Any
two of these random variables are independent. For example, of
the four faces, one is all black, one is all blue, one is both black
and blue, and one is neither black nor blue, so the joint pmf for
X1 and X2 is

x2

p12(x1, x2) 0 1 p1(x1)

x1
0 1/4 1/4 1/2
1 1/4 1/4 1/2
p2(x2) 1/2 1/2

On the other hand, it is clear that p123(x1, x2, x3) 6=
p1(x1) p2(x2) p3(x3) since the right-hand side would be 1/8 for
each combination of x1 ∈ {0, 1}, x2 ∈ {0, 1}, x3 ∈ {0, 1}, rather
than the true pmf, which is

p123(x1, x2, x3) =



1/4 x1 = 0, x2 = 0, x3 = 1

1/4 x1 = 0, x2 = 1, x3 = 0

1/4 x1 = 1, x2 = 0, x3 = 0

1/4 x1 = 1, x2 = 1, x3 = 1

0 otherwise

(4.29)

Thursday 24 September 2015
– Read Sections 2.7-2.8 of Hogg

Note: this week’s material will not be included on Prelim Exam
One.

4.3 The Variance-Covariance Matrix

Recall that the covariance of random variables Xi and Xj with
means µi = E (Xi) and µj = E (Xj) is

Cov(Xi, Xj) = E ([Xi − µi][Xj − µj]) (4.30)

In particular, the covariance of one of the rvs with itself is its
variance

Cov(Xi, Xi) = E
(
[Xi − µi]2

)
= Var(X1) (4.31)

We can define a matrix Σ whose elements5

σij = Cov(Xi, Xj) (4.32)

are the covariances between the various rvs, with the diagonal
elements being equal to the variances. We can write this in
matrix notation by first defining

µ = E (X) (4.33)

i.e., a column vector whose ith element is µi = E (Xi). Then
X−µ is a column vector whose ith element is Xi−µi. Looking
at (4.30) and (4.32) we see that the elements of the matrix Σ
are the expectation values of the elements of the matrix whose
i, j element is [Xi − µi][Xj − µj]. This matrix is

[X−µ][X− µ]T =


X1 − µ1

X2 − µ2
...

Xn − µn

(X1 − µ1 X2 − µ2 · · · Xn − µn
)

(4.34)

5This is a really unfortunate notational choice by Hogg, if you ask me,
since the variance of a single random variable is written σ2, not σ, and e.g.,
we’re defining σii = (σi)

2. Among other things, if the random vector X has
physical units, σi and σij have different units.
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
X1 − µ1

X2 − µ2
...

Xn − µn

(X1 − µ1 X2 − µ2 · · · Xn − µn
)

=


[X1 − µ1]2 [X1 − µ1][X2 − µ2] · · · [X1 − µ1][Xn − µn]

[X1 − µ1][X2 − µ2] [X2 − µ2]2 · · · [X2 − µ2][Xn − µn]
...

...
. . .

...

[X1 − µ1][Xn − µn] [X2 − µ2][Xn − µn] · · · [Xn − µn]2

 (4.35)

Figure 2: Elements of the random matrix [X− µ][X− µ]T

i.e., the outer product of the random vector X− µ with itself,
whose elements are spelled out in (4.35) in Figure 2 (Note that
this is a random matrix, a straightforward generalization of a
random vector.) Thus the variance-covariance matrix, which we
write as Cov(X), is

Cov(X) = Σ = E
(
[X− µ][X− µ]T

)
(4.36)

Note that Cov(X) must be a positive definite matrix. This can
be shown by considering

vT Cov(X)v = E
(
vT[X− µ][X− µ]Tv

)
(4.37)

Now, the inner product vT[X − µ] is a single random variable
(or, if you like, a 1 × 1 matrix), and so if we call that random
variable Y , the fact that the inner product is symmetric tells us
that

[X− µ]Tv = Y = vT[X− µ] (4.38)

and so
vT Cov(X)v = E

(
Y 2
)
≥ 0 (4.39)

4.4 Transformations of Several RVs

Consider the case where we have n random variables
{X1, X2, . . . , Xn with a joint pdf fX(x) and wish to obtain the

joint pdf fY(y) for n functions Y1 = u1(X), Y2 = u2(X), . . . ,
Yn = un(X) of those random variables. (We can summarize this
as Y = u(X).) For simplicity, we assume the transformation is
invertible, so that we can write X1 = w1(Y), X2 = w2(Y), . . . ,
Xn = wn(Y), or equivalently X = w(Y). (See Hogg for a dis-
cussion of the case where the transformation isn’t single-valued.)
We refer to the sample space for X as S, and the transformation
of that space (the sample space for Y ) as T . Consider a subset
A ⊂ S whose transformation is B ⊂ T . Then X ∈ A is the
same event as Y ∈ B, so

∫
· · ·
∫

A

fX(x) dx1 · · · dxn = P (X ∈ A)

= P (Y ∈B) =

∫
· · ·
∫

B

fY(y) dy1 · · · dyn (4.40)

We can change variables in the first form of the integral, with
the result that A is transformed into B, and the volume element
becomes

dx1 · · · dxn =

∣∣∣∣det

(
∂x

∂y

)∣∣∣∣ dy1 · · · dyn (4.41)
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where ∂x
∂y

is the Jacobian matrix

∂x

∂y
=


∂x1
∂y1

∂x1
∂y2

· · · ∂x1
∂yn

∂x2
∂y1

∂x2
∂y2

· · · ∂x2
∂yn

...
...

. . .
...

∂xn
∂y1

∂xn
∂y2

· · · ∂xn
∂yn

 (4.42)

so we can write∫
· · ·
∫

A

fX(x) dnx =

∫
· · ·
∫

B

fX(w(y))

∣∣∣∣det

(
∂x

∂y

)∣∣∣∣ dny
=

∫
· · ·
∫

B

fY(y) dny

(4.43)

In order for this equality to hold for any region A, the integrands
must be equal everywhere, i.e.,

fY(y) = fX(w(y))

∣∣∣∣det
∂x

∂y

∣∣∣∣ (4.44)

4.5 Example #1

Consider the joint pdf6

fX(x1, x2, x3) =

{
120x1x2 0 < x1, x2, x3, x1 + x2 + x3 < 1

0 otherwise

(4.45)

6Incidentally, this is a real example, a Dirichlet distribution with pa-
rameters {2, 2, 1, 1}.

and define the transformation

Y1 =
X1

X1 +X2 +X3

(4.46a)

Y2 =
X2

X1 +X2 +X3

(4.46b)

Y3 = X1 +X2 +X3 (4.46c)

which has the inverse transformation

X1 = Y1Y3 (4.47a)

X2 = Y2Y3 (4.47b)

X3 = (1− Y1 − Y2)Y3 (4.47c)

The Jacobian matrix of the transformation is

∂x

∂y
=

 y3 0 y1

0 y3 y2

−y3 −y3 (1− y1 − y2)

 (4.48)

with determinant

det
∂x

∂y
=

∣∣∣∣∣∣
y3 0 y1

0 y3 y2

−y3 −y3 (1− y1 − y2)

∣∣∣∣∣∣
= y2

3(1− y1 − y2)− (−y2
3y1 − y2

3y2) = y2
3

(4.49)

The sample space for X is

S ≡ {0 < x1, 0 < x2, 0 < x3, x1 + x2 + x3 < 1} (4.50)

so we need to find the corresponding support space for Y

T ≡ {0 < y1y3, 0 < y2y3, 0 < (1− y1 − y2)y3, y3 < 1} (4.51)

To see how we can satisfy this, first note that the first three
conditions imply 0 < y3. This is because, in order to satisfy
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the first two, we have to have y1, y2 and y3 all positive or all
negative. But if they are all negative then (1−y1−y2)y3 cannot
be positive. Since we thus know 0 < y3, the first two conditions
imply 0 < y1 and 0 < y2. The third condition then implies
0 < 1 − y1 − y2, i.e., y1 + y2 < 1. The necessary and sufficient
conditions to describe the transformed sample space are thus

T ≡ {0 < y1, 0 < y2, y1 + y2 < 1, 0 < y3 < 1} (4.52)

Putting it all together, we have a pdf of

fY(y1, y2, y3) = fX(y1y3, y2y3, [1− y1 − y2]y3) y2
3

=

{
120 y1 y2 y

4
3 0 < y1, 0 < y2, y1 + y2 < 1, 0 < y3 < 1

0 otherwise

(4.53)

4.6 Example #2 (fewer Y s than Xs)

It’s also possible to consider transformations between differ-
ent numbers of random variables. I.e., we can start with
fX1···Xn(x1, . . . , xn) and use it to obtain fY1···Ym(y1, . . . , ym) given
transformations Yj = uj(X1, . . . , Xn) even when m 6= n. If
m > n it’s a bit tricky, since the distribution for the {Yj}
is degenerate. But if m < n, its relatively straightforward.
You considered the case where n = 2 and m = 1 by a dif-
ferent approach, using the joint pdf fX1X2(x1, x2) to obtain
FY (y) = P (u(x1, x2) ≤ y) and differentiating, but we con-
sider a more general technique here. We can make up an ad-
ditional n − m random variables {Ym+1, . . . , Yn}, use the ex-
panded transformation to obtain fY1···Yn(y1, . . . , yn), and then
integrate out marginalize over these n −m variables to obtain
the marginal pdf fY1···Ym(y1, . . . , ym). Any set of additional func-
tions {um+1(x1, . . . , xn), . . . , un(x1, . . . , xn)} will work, as long as
the full transformation we end up with is invertible.

As an example, return to the pdf (4.45), but consider the
transformation

Y1 =
X1

X1 +X2 +X3

(4.54a)

Y2 =
X2

X1 +X2 +X3

(4.54b)

and obtain the joint pdf fY1Y2(y1, y2). Well, in this case we
already know a convenient choice, Y3 = X1 + X2 + X3. We
have thus already done most of the problem, and just need to
marginalize (4.53) over Y3 to obtain the pdf7

fY1Y2(y1, y2) =

∫ ∞
−∞

fY1Y2Y3(y1, y2, y3) dy3

=

∫ 1

0

120 y1 y2 y
4
3 dy3 =

{
24 y1 y2 0 < y1, 0 < y2, y1 + y2 < 1

0 otherwise

(4.55)

Tuesday 29 September 2015
– Review for Prelim Exam One

The exam covers materials from the first four weeks of the term,
i.e., Hogg sections 1.5-1.10 and 2.1-2.5, and problem sets 1-4.

Thursday 1 October 2015 – First Prelim Exam

7This turns out to be a Dirichlet distribution as well, this time with
parameters {2, 2, 1}.
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