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Tuesday 26 January 2016
– Refer to Section 11.1 of Hogg, Chapters 1
and 2 of Jaynes and Van Horn 2003

As a supplement/alternative to the “Dutch Book” presentation
in Section 11.1 of Hogg, we’ll be using the following references to
develop probability theory as an extension of logical reasoning:

• E. T. Jaynes, Probability Theory: the Logic of Science,
chapters one and two. The first three chapters of the book
are available free online at http://bayes.wustl.edu/etj/
prob/book.pdf

• K. S. Van Horn, International Journal of Applied Reason-
ing, 38, 3 (2003). available on line at http://ksvanhorn.

com/bayes/Papers/rcox.pdf
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0 Preliminaries

0.1 Administrata

• Syllabus

• Text: Hogg, McKean, and Craig, Introduction to Mathe-
matical Statistics, 7th edition.

• Other useful books:

– Casella and Berger, Statistical Inference, 2nd edition.
This is a standard first-year graduate text in statis-
tics. It covers roughly the same material, but with
a little more sophistication (more possible pathologies
are mentioned) but also more of a practical philosophy.

– Jaynes, Probability Theory: the Logic of Science. This
is a sort of Bayesian manifesto and as such doesn’t
overlap much with the traditional approach, but it’s
got a lot of interesting bits in it, such as a demon-
stration that you can derive probability as an obvious
extension of logic.

• Course website: http://ccrg.rit.edu/~whelan/

STAT-406/

– Will contain links to notes and problem sets; course
calendar is probably the most useful.

– Course calendar: tentative timetable for course.

• Course work:

– Please read the relevant sections of the textbook before
class so as to be prepared for class discussions.

– There will be quasi-weekly homeworks. Collaboration
is allowed an encouraged, but please turn in your own
work, as obviously identical homeworks may not re-
ceive credit.

– There will be two prelim exams, in class, and one cu-
mulative final exam.

• Grading:

5% Class Participation

20% Problem Sets

20% First Prelim Exam

20% Second Prelim Exam

35% Final Exam

You’ll get a separate grade on the “quality point” scale
(e.g., 3.1667–3.5 is the B+ range) for each of these five
components; course grade is weighted average.

0.2 Outline

1. Bayesian Statistics (Chapter Eleven)

2. Maximum Likelihood (Chapter Six)

3. Sufficiency (Chapter Seven)

4. Optimal Tests of Hypotheses (Chapter Eight)

Warning: the material in this course is even more advanced
and abstract than in Math Stat I.

1 The Bayesian Approach to Proba-

bility

Unlike classical frequentist inference, which assigns probabili-
ties only to the outcomes of repeatable experiments, Bayesian
inference allows the assignment of probabilities to any statement
which can be true or false. Classical probabilities are defined in
terms of the frequencies of outcomes in the limit of many repe-
titions of the experiment, and are manipulated using set theory.
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Bayesian probabilities are an expression of uncertainty rather
than intrinsic randomness, and are better understood in terms
of logic rather than set theory. The remarkable thing is that
these two interpretations are described by the same mathemat-
ical operations, as we’ll see in a moment.

Section 11.1 of Hogg contains a standard description of
Bayesian reasoning as “subjective probabilities” using expla-
nations related to gambling. Rather than this “Dutch book”
approach, we’ll motivate the Bayesian approach to probability
as an extension to the formal logic encoded in Boolean algebra.
The basic ingredient of deductive reasoning is the syllogism:

• A implies B

• A is true

• therefore B is true

For example, proposition A may be “it is raining” and propo-
sition B “there are clouds in the sky”. Plausible reasoning, on
the other hand, includes the “weak syllogism”

• A implies B

• B is true

• therefore A is more plausible

Knowledge that there are clouds in the sky doesn’t mean that it’s
definitely raining, but the proposition of rain is more plausible
with the information about clouds than without it.

1.1 Logic and Deductive Reasoning

To understand how probability arises out of extended logic, we
first need to define a few of the basic ingredients of symbolic
logic. We write propositions as A, B, etc., and we can combine
them with basic logical operations:

• Negation: A is true if A is false, and vice-versa. (This is the
direct analogue of the complement Ac of set theory.) This
can be thought of as “not A”, and is sometimes written ¬A.

• Conjunction: A ∧ B is true if A and B are both true, and
false otherwise. (This is the direct analogue of the intersec-
tion A∩B of set theory.) This is also known as “A and B”,
and for compactness, is often written as A,B or even AB.

• Disjunction: A ∨ B is true if either A or B, or both, are
true, and false otherwise. (This is the direct analogue of
the union A ∪ B of set theory.) The meaning is “A or
B” (inclusive or), and is sometimes (somewhat confusingly)
written A + B. It’s actually not necessary to define this
operation separately, because it can be written in terms of

negation and conjunction as A ∨B = A ∧B.

We can check logical statements like that by generating a truth
table with entries for each possible combination of truth and
falsehood for the atomic propositions A and B.

A B A ∧B A ∨B A B A ∧B A ∧B
T T T T F F F T
T F F T F T F T
F T F T T F F T
F F F F T T T F

We can also represent the statement “A implies B” symbolically
as A ⇒ B as the conditional proposition B|A (i.e., “B|A is
true” means B is true if A is true). In the real world, all of
our statements of logicial (as well as plausible) reasoning are
understood in the context of some background information, so
in some sense all propositions are conditional. If we want to
be pedantic, we can represent this background information with
the proposition I and write A|I and B|I rather than just A and
B. Some of the basic rules of logic include:
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• Idempotence: A ∨ A = A and A ∧ A = A

• Commutativity: A ∨B = B ∨ A and A ∧B = B ∧ A
• Associativity: A∨(B∨C) = (A∨B)∨C and A∧(B∧C) =

(A ∧B) ∧ C
• Distributivity: A ∧ (B ∨ C) = (A ∨B) ∧ (A ∨ C)

These all also apply to conditional propositions, e.g, (A∨A)|I ≡
AA|I = A|I

1.2 Plausible Reasoning and Cox’s Theorem

If we want to consider propositions like A|I to be “more plau-
sible” or “less plausible” rather than “definitely true” or “defi-
nitely false”, we need an extension of logic which assigns a “plau-
sibility value” to A|I. In a confusing bit of notation, most ref-
erences use the notation (A|I) to refer to this plausibility value.
In the interest of clarity, I’ll call it π(A|I) instead. (It doesn’t
matter which letter we use, because the notation will become
obsolete in a moment.) There is a remarkable result that if the
plausibility obeys a few basic conditions, this construction is
equivalent to standard probability theory. Those conditions can
be written as1

1. The plausibility π(A|I) of any proposition is a real number,
with definitely true propositions being the most plausible
and definitely false propositions the least plausible.

2. Plausible reasoning should not contradict “common sense”
and in particular should reduce to deductive reasoning when
propositions are known to be true or false.

3. The formalism should be consistent, specifically

1You may notice that some of these (e.g., “common sense”) are not
rigorously defined. See Van Horn for a more rigorous statement of the
conditions.

(a) If there are two ways to calculate the same quantity,
they should give the same answer

(b) The formalism should use all relevant information

(c) Equivalent propositions should be represented by the
same plausibility value

The full proof of Cox’s theorem is somewhat long and tedious,
but here are some of the highlights. The basic results are

1. the development of a “product rule” expressing π(A ∧
B|I) ≡ π(A,B|I) in terms of combinations of π(A|I),
π(A|B, I), π(B|I), and π(B|A, I);

2. a statement about the plausibility values corresponding to
truth and falsehood;

3. the development of a “sum rule” relating π(A|I) to π(A|I).

The first step is to consider what functional dependencies are
possible for π(A,B|I). There are eleven possible choices of two
or more arguments out of the four options π(A|I), π(A|B, I),
π(B|I), and π(B|A, I), but all but two of them can be excluded
by appeals to “common sense” (see Van Horn for details and
commentary). For example, we would not expect to be able to
write π(A,B|I) as a function only of π(A|I) and π(B|I), because
it ignores all possible relationships between the plausibility of A
and B in the light of I. For example, if the proposition A is that
a person is a man and A′ is that they are a woman, we might
have π(A|I) = π(A′|I). But if B is the proposition that they
have a beard, we would expect that P (A,B|I) 6= P (A′, B|I).
The only possibilities that survive are a function of π(A|I) and
π(B|A, I), or a function of π(B|I) and π(A|B, I). But since
A,B is the same as B,A, both expressions must be valid and
represented by the same functional form:

π(A,B|I) = F [π(A|I), π(B|A, I)] = F [π(B|I), π(A|B, I)]
(1.1)
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Next one applies the condition of consistency to show that

π(A,B,C|I) = F [π(C|I), F [π(B|C, I), π(A|B,C, I)]]

= F [F [π(C|I), π(B|C, I)], π(A|B,C, I)]
(1.2)

The equation F [x, F [y, z]] = F [F [x, y], z] is known as the asso-
ciativity equation, and its general solution is

F [x, y] = w−1(w(x)w(y)) (1.3)

where w(x) is some positive, continuous, monotonic function.
This means the product rule for plausibilities is

w(π(A,B|I)) = w(π(B|I))w(π(A|B, I)) (1.4)

Next, we consider the value of w(π(A|I)) in the cases where A|I
is definitely true or definitely false.

• If A|I is definitely true, then A,B|I is an equivalent state
of knowledge to B|I. Information about the truth of A is
already encoded in I. Thus π(A,B|I) = π(B|I) by the
consistency condition. Likewise, I already tells us all there
is to know about A, so A|B, I is equivalent to A|I, and
p(A|B, I) = p(A|I). This means

w(π(B|I)) = w(π(B|I))w(π(A|I)) if A|I definitely true
(1.5)

which implies that truth corresponds to w(π(A|I)) = 1.

• If A|I is definitely false, then A,B|I is an equivalent state
of knowledge to A|I. The proposition A is already false
given I, without adding the further restriction of B. Thus
π(A,B|I) = π(A|I) by the consistency condition. As be-
fore, I already gives us the full knowledge about A, so
A|B, I is equivalent to A|I, and p(A|B, I) = p(A|I) again.
This means

w(π(A|I)) = w(π(B|I))w(π(A|I)) if A|I definitely false
(1.6)

There are two ways this can be true for arbitrary B. Either
w(π(A|I)) = 0 for a false statement, in which case w(x)
is a monotonically increasing function with 0 ≤ w(x) ≤
1, or w(π(A|I)) is infinite for a false statement, in which
case w(x) is a monotonically decreasing function with 1 ≤
w(x) < ∞. In the latter case, we can just replace w(x)
with a new function wnew(x) = 1/wold(x) and we once again
have wnew(x) monotonically increasing from 0 for definite
falsehood to 1 for definite truth. We’ll assume we’ve already
done this.

Finally, we consider the relationship of π(A|I) to π(A|I), or
equivalently w(π(A|I)) to w(π(A|I)). The argument goes that,
since the propositions A and A are logically related, in particular
A ∧ A ≡ AA is definitely false and A ∨ A is definitely true, the
plausibilities must be related by

w(π(A|I)) = S(w(π(A|I))) (1.7)

where S(x) some monotonically decreasing function S(x) with
S(0) = 1 and S(1) = 0. Careful consideration of this function in
light of the product rule (see Jaynes for the gory details) allows
one to conclude

[w(π(A|I))]m + [w(π(A|I))]m = 1 (1.8)

where m is some positive real number. Since we can also write
the product rule as

[w(π(A,B|I))]m = [w(π(A|I))]m [w(π(B|A, I))]m (1.9)

we can define, in lieu of the plausibility π(A|I), a number

P (A|I) = [w(π(A|I))]m (1.10)

which is a monotonically increasing function of the plausibility,
and which obeys the fundamental rules of probability:
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1. P (A,B|I) = P (A|I)P (B|A, I)

2. 0 ≤ P (A|I) ≤ 1 with 0 corresponding to certain falsehood
and 1 to certain truth

3. P (A|I) + P (A|I) = 1

From these rules we can derive all of the other results of prob-
ability theory. For instance, if A and B are mutually exclusive
in the context of of I, so that A,B|I is impossible, we can work
out

P (A ∨B|I) = 1− P (A ∨B|I) = 1− P (A,B|I)

= 1− P (A|I)P (B|A, I) = 1− P (A|I)[1− P (B|A, I)]

= 1− P (A|I) + P (A|I)P (B|A, I)

= P (A|I) + P (A,B|I)

(1.11)

Now, since A and B are mutually exclusive given I, A,B|I is
equivalent to B|I, which means

P (A,B|I) = P (A|I) + P (B|I) if A,B|I impossible (1.12)

which is the standard restricted sum rule for mutually exclusive
propositions.

Thursday 28 January 2016
– Read Section 11.2.1 of Hogg

2 Bayesian Parameter Estimation

The most common paradigm of Bayesian inference can be sum-
marized in terms of probabilities involving the propositions

• D ≡ “we collected some specific data or results in an ex-
periment or observations”

• H ≡ “some specific hypothesis is true”

as well as the usual background information/knowledge I we
include in our calcuations. D will typically include the values of
quantities with some “randomness” or “noise” included, while
H may include values or ranges of values for model parameters.
The fundamental calculational tool is Bayes’s theorem, which
uses the product rule to write

P (D|I)P (H|D, I) = P (H,D|I) = P (H|I)P (D|H, I) (2.1)

and then solves it for

P (H|D, I) =
P (H|I)P (D|H, I)

P (D|I)
(2.2)

This relationship is useful because we can usually write down
P (D|H, I) fairly easily. It’s the basic ingredient in frequentist
statistics: a sampling distribution that tells us how probable a
particular realization of random data is given a hypothesis H
and background information I. However, what we usually intu-
itively want to do in statistical inference is say how plausible a
particular model or hypothesis or parameter range is, given that
we’ve observed certain data. This is quantified by P (H|D, I).
The different parts of (2.2) have names:

• P (D|H, I) is the likelihood (i.e., the sampling distribution
viewed with an eye towards its dependence on H).

• P (H|I) is the prior probability which we assign to H based
only on the background information I. (This is obviously a
tricky thing to do sometimes.)

• P (H|D, I) is the posterior probability for H given both I
and the observed data D.

• P (D|I) is, in other contexts, called the evidence. It’s ba-
sically a normalization factor; if {Hi} is an exhaustive set
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of mutually exclusive hypotheses, so that
∑

i P (Hi|I) = 1,
then P (D|I) =

∑
i P (Hi, D|I) =

∑
i P (Hi|I)P (D|Hi, I)

ensures that
∑

i P (Hi|D, I) = 1. We can often avoid the
need to calculate it exactly by considering P (D|I) to be a
proportionality constant independent of H and writing

P (H|D, I) ∝ P (H|I)P (D|H, I) (2.3)

2.1 Prior and Posterior Distributions

The simplest manifestation of this idea is a model with one
parameter and one measurement. Because we want to assign
probabilities to the values of both, we write the parameter as a
“random variable” Θ (it’s not random in the usual sense, but
since the uncertainty associated with is described by a proba-
bility distribution, we can treat it as a random variable in the
formalism), and the data as another random variable X. Then
our background information I typically assigns prior probabil-
ities to different values of Θ, as well as to values of X, given
a value for Θ. If the distributions are discrete, this looks like
probability mass functions

pΘ(θ) = P (Θ = θ|I) (2.4)

and

pX|Θ(x|θ) = P (X = x|Θ = θ, I) (2.5)

For the sake of notational simplicity in what follows, we’ll gen-
erally suppress the reference to background information I, but
keep in mind that all probabilities are conditional upon our gen-
eral state of knowledge. Bayes’s theorem becomes

pΘ|X(θ|x) =
pΘ(θ) pX|Θ(x|θ)

pX(x)
∝ pΘ(θ) pX|Θ(x|θ) (2.6)

If the distributions are continuous, there’s an analogous form in
terms of probability density functions

fΘ|X(θ|x) =
fΘ(θ) fX|Θ(x|θ)

fX(x)
∝ fΘ(θ) fX|Θ(x|θ) (2.7)

There are straightforward generalizations to the case where X
and/or Θ are replaced with multivariate random vectors. One
particularly interesting case is where X is a random sample
drawn from a distribution fX|Θ(x|θ), i.e,

fX|Θ(x|θ) =
n∏
i=1

fX|θ(xi|θ) (2.8)

and then the posterior pdf for Θ becomes

fΘ|X(θ|x) =
fX,Θ(x, θ)

fX(x)
=
fΘ(θ) fX|Θ(x|θ)

fX(x)
∝ fΘ(θ) fX|Θ(x|θ)

(2.9)
For some reason, Hogg invents a lot of notation, using different
letters for fX|Θ(x|θ) [which he calls L(x|θ)], fΘ(θ) [h(θ)], fX(x)
[g1(x)], and fX,Θ(x, θ) [g(x, θ)]. In practice, the subscripts on
the pdfs or pmfs ought to tell you which random variables (ob-
servations and/or unknown parameters) are in question. One
can (and sometimes does) go even further and rely upon the
names of the arguments to tell the reader what quantities are
meant2, e.g.,

f(θ|x) =
f(θ) f(x|θ)

f(x)
(2.10)

Note that the denominator of (2.9) can be calculated as

fX(x) =

∫ ∞
−∞

fΘ(θ) fX|Θ(x|θ) dθ (2.11)

2This is sometimes considered an abuse of notation in mathematical
circles, though, and is related to the language gap between mathematicial
and physical scientists, exemplified by the question: if T (x, y) = kx2 +ky2,
what is T (r, φ)?
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2.1.1 Example: Gaussian Likelihood

To give a very simple example of the calculation of a posterior
pdf, suppose we have a model with one parameter Θ and make a
single measurement of a quantity X, with a Gaussian likelihood

fX|Θ(x|θ) =
1

σ
√

2π
e−(x−θ)2/(2σ2) (2.12)

and a prior pdf of

fΘ(θ) =
1

γ
√

2π
e−θ

2/(2γ2) (2.13)

Bayes’s theorem tells us that the posterior pdf is

fΘ|X(θ|x) =
fΘ(θ) fX|Θ(x|θ)

fX(x)
(2.14)

The numerator is

fX,Θ(x, θ) = fΘ(θ) fX|Θ(x|θ) =
1

2πσγ
exp

(
−1

2
[σ−2(x− θ)2 + γ−2θ2]

)
(2.15)

This still has a Gaussian dependence on θ, which we see by
completing the square on the expression in square brackets:

σ−2(x− θ)2 + γ−2θ2 = (σ−2 + γ−2)θ2 − 2σ−2xθ + σ−2x2

= (σ−2 + γ−2)

(
θ − x

1 + σ2/γ2

)2

+
x2

σ2 + γ2
(2.16)

If we define σ′ = (σ−2 + γ−2)−1/2 and θ0(x) = x
1+σ2/γ2

, we have

fX,Θ(x, θ) =
e−x

2/[2(σ2+γ2)]

2πσγ
e−[θ−θ0(x)]2/(2σ′2) (2.17)

We can marginalize over θ to get the denominator

fX(x) =
e−x

2/[2(σ2+γ2)]

2πσγ

∫ ∞
−∞

e−[θ−θ0(x)]2/(2σ′2) dθ =
e−x

2/[2(σ2+γ2)]

2πσγ
σ′
√

2π

(2.18)
so the posterior is

fΘ|X(θ|x) =
fX,Θ(x, θ)

fX(x)
=

1

σ′
√

2π
e−[θ−θ0(x)]2/(2σ′2) (2.19)

i.e., a Gaussian distribution with mean θ0(x) = x
1+σ2/γ2

and

variance σ′2 = (σ−2 +γ−2)−1. Note that we didn’t actually have
to keep track of the factor out front which cancelled. It would
have been sufficient to write

fΘ|X(θ|x) ∝ fΘ(θ) fX|Θ(x|θ)

∝ exp

(
−(σ−2 + γ−2)

2

[
θ − x

1 + σ2/γ2

]2
)

(2.20)

and then deduce the form of the proportionality constant from
the requirement that

∫∞
−∞ fΘ|X(θ|x) dθ = 1.

Note that if the prior is very broad, γ � σ, then θ0(x) ≈ x
and σ′ ≈ σ, and the posterior is

fΘ|X(θ|x) ≈ 1

σ
√

2π
e−[θ−x]2/(2σ2) (2.21)

i.e., it has the same shape as the likelihood function, but is
normalized as a pdf in θ.

On the other hand, if the likelihood is broad compared to the
prior, σ � γ, then σ′ ≈ γ, and θ0(x) ≈ γ2/σ2 x. If we further
have γ2/σ2 x� σ, i.e., x� √σγ, we have

fΘ|X(θ|x) ≈ 1

γ
√

2π
e−θ

2/(2γ2) (2.22)

I.e., the posterior looks just like the prior. What’s happening
here is that the prior information constrains the value of Θ much
more tightly than the observation of X.
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Tuesday 2 February 2016
– Read Section 11.2.2 of Hogg

2.2 Bayesian point estimation

When we do Bayesian inference, e.g., from a sample X drawn
from a distribution fX|Θ(x|θ), the full information is contained
in the posterior probability distribution

fΘ|X(θ|x) ∝ fΘ(θ)
∏
i

fX|Θ(xi|θ) . (2.23)

For example, suppose we observe a Poisson process with an un-
known rate of Θ events per observation interval, so that the
likelihood function is

pX|Θ(x|θ) =
θx

x!
e−θ (2.24)

with a prior pdf which is a gamma distribution with parameters
α and β:

fΘ(θ) ∝ θα−1e−θ/β 0 < θ <∞ (2.25)

Note that we might want to try something like a uniform distri-
bution on θ, restricted to θ > 0. That wouldn’t be normalizable
for 0 < θ < ∞, so it wouldn’t be an allowed pdf. However, we
could consider it as a limit of the gamma family with α = 1
as β → ∞. Now suppose we observe n intervals, i.e., collect s
sample of size n from this Poisson distribution, with observed
numbers of events {x1, x2, . . . , xn} ≡ x. The likelihood function
is then

pX|Θ(x|θ) =
n∏
i=1

θxi

xi!
e−θ = θ

∑n
i=1 xi e−nθ

n∏
i=1

1

xi!
(2.26)

For the sake of constructing the posterior pdf, we’re only inter-
ested in the dependence of the likelihood on the parameter θ, so

pX|Θ(x|θ) ∝ θ
∑n

i=1 xi e−nθ (2.27)

Note that this only depends on the total number of events y =∑n
i=1 xi (and the number of observation intervals n). We thus

say that Y =
∑n

i=1 Xi is a sufficient statistic for the parameter
θ, i.e., the only combination of the random sample X which
matters for constructing the likelihood, up to a θ-independent
constant. The posterior is then

fΘ|X(θ|x) ∝ fΘ(θ)pX|Θ(x|θ) ∝ θα+y−1e−(β+n)θ (2.28)

i.e., a gamma distribution with parameters α′ = α + y and
β′ = (β−1 + n)−1. If we go with the uniform prior limit, i.e.,
α = 1 and β−1 � n, we have

fΘ|X(θ|x) ∝ θye−nθ (2.29)

For example, if y = 4 and n = 1, the posterior is a Gamma(5,1)
distribution:
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Posterior for Poisson rate from 4 events

If you want to know what we have to say about the unknown rate
Θ after observing three events in an observation interval, given

9



a uniform prior, that plot tells the whole story. Still, sometimes
we want to boil the posterior down to a single estimate. Hogg
refers to this as δ(x), using some notation which we haven’t
developed yet. Three obvious choices of a single number δ(x)
are

• The mode θ̂ = argmaxθ fΘ|X(θ|x) of the posterior pdf.

• The mean or expectation value

θ̄ = E(Θ|x) =

∫ ∞
−∞

θ fΘ|X(θ|x) dθ (2.30)

Choosing δ(x) = E(Θ|x) minimizes the mean square error

E([Θ− δ(x)]2|x) =

∫ ∞
−∞

[θ − δ(x)]2 fΘ|X(θ|x) dθ (2.31)

Note that you showed this on the extra credit problem of
problem set 2 in STAT405 last semester.

• The median θ̃ defined by∫ θ̃

−∞
θ fΘ|X(θ|x) dθ =

1

2
(2.32)

Choosing δ(x) = θ̃ minimizes the mean absolute error

E(|Θ− δ(x)| |x) =

∫ ∞
−∞
|θ − δ(x)| fΘ|X(θ|x) dθ (2.33)

This was also part of the extra credit problem of problem
set 2 in STAT405 last semester.

For the example at hand, we can see from the plot that the
mode is θ̂ = 4. We can also show this in general for the Gamma
distribution with parameters α′ and β′; if

f(θ) ∝ θα
′−1e−θ/β

′
(2.34)

we can maximize the pdf by maximizing its logarithm

ln f(θ) = (α′ − 1) ln θ − θ/β′ + const (2.35)

so
∂

∂θ
ln f(θ) =

(α′ − 1)

θ
− 1

β′
(2.36)

setting this to zero gives θ̂ = (α′ − 1)β′ or in our case, where
α′ = y + 1 and β′ = 1/n, θ̂ = y+1−1

n
= y/n.

On the other hand, we can see that the distribution is not
symmetric about its mode θ = 4, so the mean and median will
be different from the mode, in this case somewhat larger. We
know the expectation value of a gamma distribution is α′β′,
which in this case is θ̄ = y+1

n
or specifically 4 + 1 = 5.

There’s no closed-form expression for the median of a gamma
distribution, but we can use scipy or R to find that it is θ̃ ≈ 4.67
for the specific example we’ve considered,

2.2.1 Change of variables

Both the mean and median can be described as minimizing the
expectation value of a loss function (square error in the former
case and absolute error in the latter), and Hogg refers to them
as different choices of a Bayes estimator. There is still some-
thing appealing about quoting the mode of the posterior, since
it reflects the parameter space value near which we most ex-
pect to find the parameter given our observations. It has some
additional pitfalls, though. Suppose in the example we’ve be
considering that we change variables from Θ to Γ = 1

Θ
, i.e., in-

stead of the rate we use the inverse rate, the expected interval
between observed events. We don’t need to start the problem
over, but rather note that the posterior pdf fΘ|X(θ|x) is a proba-
bility density in θ. Thus we can change variables with the usual

10



formalism which we recall as

dP

dγ
=

∣∣∣∣dθdγ
∣∣∣∣ dPdθ =

1

γ2

dP

dθ
(2.37)

so
fΓ|X(γ|x) = γ−2fΘ|X(γ−1|x) ∝ γ−y−2e−n/γ (2.38)

we can find the maximum

∂

∂γ
ln fΓ|X(γ|x) =

−y − 2

γ
+
n

γ2
(2.39)

setting this to zero gives

γ̂ =
n

y + 2
6= 1

θ̂
=
n

y
(2.40)

Note that the mean has the same problem, since

E

(
1

Θ

∣∣∣∣x) 6= 1

E(Θ|x)
(2.41)

Specifically, when

fΘ|X(θ|x) =
1

Γ(α′)β′α
′ θ
α′−1 e−θ/β

′
, (2.42)

we get

E

(
1

Θ

∣∣∣∣x) =

∫ ∞
−∞

θ−1fΘ|X(θ|x) dθ =
1

Γ(α′)β′α
′

∫ ∞
0

θα
′−2 e−θ/β

′
dθ

=
1

Γ(α′)β′

∫ ∞
0

uα
′−2 e−u du =

Γ(α′ − 1)

Γ(α′)β′

=
1

(α′ − 1)β′
6= 1

α′β′

(2.43)

Specifically, if α′ = y + 1 and β′ = 1/n, E
(

1
Θ

∣∣x) = n
y

while
1

E(Θ|x)
= n

y+1
.

Thursday 4 February 2016
– Read Section 11.2.3 of Hogg

2.3 Bayesian Interval Estimation

2.3.1 Posterior mean and standard deviation

A single point estimate of an unknown parameter Θ only tells
one piece of the story contained in the posterior pdf fΘ|X(θ|x).
Often we want to express not only an estimate of a parameter
but also the uncertainty associated with that estimate. One way
to do this would be to report both the mean

θ̄ = E(Θ|x) =

∫ ∞
−∞

θ fΘ|X(θ|x) dθ (2.44)

of the posterior and its variance

σ2
θ = Var(Θ|x) = E([Θ− θ̄]2|x) =

∫ ∞
−∞

(θ − θ̄)2 fΘ|X(θ|x) dθ

(2.45)
and quote something like θ ∼ θ̄±σθ. So for example, if fΘ|X(θ|x)
is a Gamma(α′,β′) distribution as in our previous example, θ̄ =
α′β′ and σθ = β′

√
α′. If we’ve assumed a uniform prior on the

rate Θ and observed y events in n standard intervals, so that
α′ = y + 1 and β′ = 1/n, we would estimate θ sin y+1

n
±
√
y+1
n

.
In the specific example where y = 4 and n = 1, where we know
that θ̄ = 5, we’d conclude θ ∼ 5±

√
5 ≈ 5± 2.24.

Using the standard deviation of the posterior to set a “one
sigma errorbar” is somewhat arbitrary and best suited to cases
where the posterior is Gaussian. In practice, it can have some
pitfalls. for example, if we decided to put three sigma errorbars
on the estimate we’ve just considered, they’d stretch from 5 −
3
√

5 ≈ −1.71 to 5 + 3
√

5 ≈ 11.71. But we know the posterior
pdf for Θ is zero for negative values of theta, so the lower limit
of that interval doesn’t make a lot of sense.

11



2.3.2 Credible intervals

Instead, we can use the probabilistic meaning of the posterior
pdf to define an interval with lower and upper ends `(x) and
u(x) such that there is some posterior probability 1 − α (e.g.,
90% or 95%) that the unknown value of Θ lies between `(x) and
u(x).

1− α = P (`(x) < Θ < u(x)|X = x) =

∫ u(x)

`(x)

fΘ|X(θ|x) dθ

(2.46)
(`(x), u(x)) is known as a credible interval or plausible interval
for the parameter Θ. Note that this is closer to most people’s
intuition than the corresponding frequentist confidence interval,
defined by

1− α = P (`′(X) < θ < u′(X)) (2.47)

where the probability in question applies not to the uncertainty
in the parameter θ, but to the random variation of the endpoints
of the interval under hypothetical repetitions of the experiment.

We saw that the construction of a frequentist confidence in-
terval was somewhat arbitrary, depending on e.g., the choice of
a pivot variable. On the other hand, the definition of a credible
interval follows straightforwardly from the construction of the
posterior pdf. The only ambiguity is how much of the “leftover”
probability falls on each side of the interval. For instance, a 90%
credible interval could be between the 5th and 95th percentiles
of the posterior pdf, or the 1st and 91st, or everything above
the 10th, etc. One simple choice is to make it symmetric, by
requiring

P (Θ < `(x)|X = x) =
α

2
= P (u(x) < Θ|X = x) (2.48)

E.g., if we want a symmetric 90% credible interval for the pdf
considered last time, which is a gamma distribution with α′ =
y + 1 = 5 and β′ = 1

n
= 1, we can use scipy to get it:

In [1]: from scipy.stats import gamma as gammadist

In [2]: y=4;

In [3]: rv = gammadist(y+1)

In [4]: print ( "90 pct symmetric credible interval is"

...: + " %g to %g" % (rv.ppf(0.05),rv.ppf(0.95)) )

90 pct symmetric credible interval is 1.97015 to 9.15352

We can shade this in on the pdf:
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Posterior for Poisson rate from 4 events

The white region on the left contains 5% of the area under the
posterior pdf; the white region on the left contains another 5%,
and the remaining 90% is in the shaded region in the middle.
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2.3.3 Highest-density regions

Note: this is actually covered in the second half of section 11.3
of Hogg.

Another approach to choosing a credible interval is to collect
our 90% (or whatever 1−α is equal to) by taking the θ interval
with the highest values of the pdf. We call this the highest-
density region or HDR. For example, in the case just considered,
this turns out to be 1.52 to 8.34:

0 2 4 6 8 10 12 14 16

θ

0.00

0.05

0.10

0.15

0.20

f Θ
|Y
(θ
|y
)

Posterior for Poisson rate from 4 events

We see, of course, that the pdf at the lower end of the interval is
the same as at the upper end, which will always happen if the pdf
is continuous. We also note that the width of this credible inter-
val, 8.34− 1.52 = 6.82 is less than the width 9.15− 1.97 = 7, 18
of the symmetric credible interval. It’s not hard to see that the
HDR will be the narrowest credible interval corresponding to a
given probability. (If you want to integrate up to a given prob-
ability, the way to get it in the narrowest range of the integrand
is to take the region with the highest probability density.)

A few note about highest-density credible intervals:

• That the HDR is easiest to construct if the posterior distri-
bution is symmetric about its peak; in that case, the HDR
will be the same as the symmetric credible interval. In gen-
eral one has to find it numerically (which is what I did for
the gamma distribution).

• The HDR is a nice way to transition between one-sided
and two-sided credible intervals. For instance, if we have a
truncated Gaussian posterior on θ, of the form

fΘ|X(θ|x) ∝ e(θ−µ)2/(2σ2) 0 < θ <∞ (2.49)

then, if µ < 1.22σ, the lower end of the HDR for θ will be
at zero. If µ > 1.22σ, both ends will be at positive θ, and
we will set a two-sided credible interval.

• Like the mode, the HDR is not invariant under
reparametrization.

• The HDR construction generalizes nicely to higher-
dimensional parameter spaces, where the boundaries of the
HDR are just level surfaces of the multi-dimensional poste-
rior pdf.

Tuesday 9 February 2016
– Read Section 11.3 of Hogg

3 Prior Distributions in Bayesian In-

ference

3.1 Conjugate Prior Families

We now come to the recurring question about Bayesian infer-
ence: why do we choose a particular prior? The answer so far is
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not very satisfying: our priors so far have basically been chosen
to make the math easier. To collect together some results from
the last couple of weeks of lectures and homeworks:

• If the prior for the probability in a binomial experiement is
a Beta(α,β) distribution, and we observe k successes in n
trials, the posterior is a Beta(α+ k,β +n− k) distribution.

• If the prior for the mean of a normal distribution with
known variance σ2 is a N(µ0, σ

2
0) distribution and we collect

a sample of size n with sample mean x, the posterior is a

N
(
µ0+σ−2

0 nσ−2x

σ−2
0 +nσ−2 , 1

σ−2
0 +nσ−2

)
distribution.

• If the prior for the rate per unit time of a Poisson process
is a Gamma(α0,β0) distribution, and we observe y events
in a time t, the posterior is a Gamma(α0 + y,[β−1

0 + t]−1)
distribution.

These are all examples of what is called a conjugate prior family
of distributions for a given likelihood function and parameter(s)
of interest. This means that if the prior distribution is a mem-
ber of the family, the posterior will be a member as well, with
parameters determined by the sufficient statistic(s) constructed
from the data. This seems like an arbitrary way to choose a
prior (which is after all supposed to reflect your knowledge go-
ing into the experiment, and shouldn’t have to depend on what
measurement you’re planning to make), but it’s often the case
that a “realistic” prior is close to a member of the conjugate
prior distribution, or at least a limiting form of the family. For
instance, we noted last week that a uniform distribution from 0
to ∞ is the limit of a Gamma(1,β) distribution as β →∞.

3.2 Non-informative and Improper Priors

Often, we want to consider a problem using as little prior infor-
mation as possible. For instance, when estimating the rate of a

Poisson process, we considered a uniform prior for 0 < θ < ∞.
Of course, there is no normalized pdf of that form. The best we
can do is take a family of distributions which becomes uniform
in some limit, like the Gamma(1,β) family considered above, or

fΘ(θ) =

{
1

θmax
0 < θ < θmax

0 otherwise
(3.1)

If we try to take the limit θmax → ∞, we find that the normal-
izing constant θ−1

max goes to zero. But if we ignore normalizing
constants and just write fΘ(θ) ∝ 1, 0 < θ < ∞, we can write
the posterior arising from a counting experiment with y events
in a time t as

fΘ|Y (θ|y) ∝ fΘ(θ) fY |Θ(y|θ) ∝ θy e−θt (3.2)

which is a Gamma(y + 1,1/t) distribution, and can be written
in normalized form as

fΘ|Y (θ|y) =
ty+1

Γ(y + 1)
θy e−θt (3.3)

In this case, we call the prior distribution (which is not a true
probability density function, because it can’t be normalized)
an improper prior, but note that the results of this experiment
produce a posterior pdf which is normalized.

A prior which attempts to include no knowledge about the
parameter is known as a noninformative prior. It’s not always
obvious what that should be, however. In the case of an event
rate, we’ve used a uniform prior on the rate, which seemed pretty
obvious, but note that this prior says that the rate is as likely
to be between 1 and 2 events per hour as it is between 1001
and 1002 events per hour. It might seem more reasonable to
choose a prior which gives the same probablity for the rate to
be between 1 and 2 events per hour as between 1000 and 2000
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events per hour. That would be uniform not in the rate θ but
the logarithm λ = ln θ. If we write

dP

dθ
∼
∣∣∣∣dλdθ

∣∣∣∣ dPdλ =
1

θ

dP

dλ
(3.4)

we see that fΘ(θ) = 1
θ
fΛ(ln θ) and therefore a uniform prior

fΛ(λ) = constant corresponds to a prior fΘ(θ) ∝ 1
θ
. Note

that this is also a limiting form of the conjugate prior family
Gamma(α,β), where α → 0 and β → ∞. If we start with
this prior and observe y events in a time t, our posterior is
Gamma(y,1/t). This is then normalizable as long as y > 0, i.e.,
we observe at least one event.

3.3 Case study: Bernoulli trials

To illustrate the difficulty in defining a noninformative prior,
consider the case of repeated Bernoulli trials with probability
θ of success on each trial. We know that the Beta distribution
forms a conjugate prior family for this parameter, i.e., if the
prior is

fΘ(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 (3.5)

and we see y successes in n trials, the posterior is

fΘ|Y (θ|y) =
Γ(α + y)Γ(β + n− y)

Γ(α + β + n)
θα+y−1(1− θ)β+n−y−1 (3.6)

The seemingly obvious noninformative prior is uniform in θ, i.e.,
a Beta distribution with α = 1 = β. But the expectation value
of the resulting Beta(y + 1,n− y + 1) posterior distribution is

E(Θ|y) =
Γ(n+ 2)

Γ(y + 1)Γ(n− y + 1)

∫ 1

0

θy+1(1− θ)n−y dθ

=
Γ(n+ 2)

Γ(y + 1)Γ(n− y + 1)

Γ(y + 2)Γ(n− y + 1)

Γ(n+ 3)
=
y + 1

n+ 2
(3.7)

which is probably different from the y
n

that we might have been
expecting. But after a moment’s reflection, it makes some sense.
For example, if y = 0, a näıve y

n
estimate would give zero. But

we know from the prior that there’s some support for all 0 < θ <
1, so the mean of the posterior can’t be at one end or the other
of the range of permissible values. This probability is known
as the Bayes-Laplace rule of succession, and this prior for the
probability is the Bayes-Laplace prior.

The Bayes-Laplace rule of succession looks almost like we’ve
added a “prior” two trials, one success and one failure, to the
actual trials observed. We could ask what would happen if we
left out those two trials. I.e., what is the prior such that if we
conduct two trials–one success and one failure–the posterior is
uniform in θ? Since a uniform distribution is just a Beta(1,1)
distribution, we see that the desired prior is Beta(α,β) in the
limit that α and β go to zero. This is not normalizable, but
forms an improper prior known as the Haldane prior:

fΘ(θ) ∝ θ−1(1− θ)−1 (3.8)

Starting with the Haldane prior, we end with a posterior which
is Beta(y,n−y), whose mean is y/n. However, the posterior will
not be normalizable unless 0 < y < n.

Thursday 11 February 2016
– Read Sections 11.2.4-11.2.5 of Hogg

4 Bayesian Hypothesis Testing

So far we’ve talked mostly about parameter estimation in a
Bayesian framework. We’ve been able to write a posterior dis-
trubtion for a parameter using Bayes’s theorem

P (Θ = θ|X = x, I) =
P (Θ = θ|I)P (X = x|Θ = θ, I)

P (X = x|I)
(4.1)
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where we’ve implicitly assumed discrete distributions to make
the notation simpler, and put back in the conditioning on back-
ground information I. Built into that background information
is a model that defines the prior probability distribution for the
parameter Θ and even what parameter(s) determine the sam-
pling distribution for the data. We can explicitly note that by
replacing I with M, I, where M indicates the proposition that
the model in question is the correct one. The denominator

P (X = x|M, I) =
∑
θ

P (Θ = θ|I)P (X = x|Θ = θ, I) (4.2)

or, in the case of continuous distributions,

fX(x|M, I) =

∫ ∞
−∞

fΘ(θ|M, I) fX|Θ(x|θ,M, I) dθ (4.3)

can be treated as a largely ignorable normalization factor if we’re
interested in possible values of Θ within the context of the model
M . But we could turn this around and ask about the plausibility
of the model itself in light of the data

P (M |X = x, I) =
P (M |I)P (X = x|M, I)

P (X = x|I)
(4.4)

Now, literally working out this probability is typically impossi-
ble, since you have to know the prior probability P (M |I) of the
model, and to get the denominator you actually need to know
about every feasible model given I. But what one can consider
is the relative probabilities for two models M1 and M2 to be
correct. This is

P (M1|X = x, I)

P (M2|X = x, I)
=

(
P (M1|I)

P (M2|I)

)(
P (X = x|M1, I)

P (X = x|M2, I)

)
(4.5)

and is known as the odds ratio between the two models. The
troublesome denominator has cancelled out, and we see further

that even the prior probability ratio P (M1|I)
P (M2|I) factors out, and if

we want to see how to update the prior ratio to the posterior
one, we just need to calculate the second fraction, known as the
Bayes factor

P (X = x|M1, I)

P (X = x|M2, I)
=
fX(x|M1, I)

fX(x|M2, I)
(4.6)

The Bayes factor is an indicator of how much we’ve shifted our
relative assessment of the two models given the data. This is
the reason why

fX(x|M, I) =

∫ ∞
−∞

fΘ(θ|M, I) fX|Θ(x|θ,M, I) dθ (4.7)

is sometimes called the evidence for model M .
Note that one conceptually interesting choice is to defineM1 =

M and M2 = M , so that

P (M |X = x, I)

1− P (M |X = x, I)
=

(
P (M |I)

1− P (M |I)

)(
P (X = x|M, I)

P (X = x|M, I)

)
(4.8)

but again this is difficult in practice, because in order to know
about M , you need to know about all of the other possible mod-
els.

4.1 Gaussian example

Suppose in both models the sampling distribution is a Gaus-
sian, but in M1 it’s N(0, σ2), where σ is known while in M2 the
sampling distribution is N(θ, σ2) and the prior on θ is N(0, σ2

0).
For simplicity, assume we have a sample of size 1. (We could
make this a sample of size n by replacing X with X and σ2 with
σ2/n.) The evidence for M1 is

fX(x|M1) = fX|Θ(x|0) =
1

σ
√

2π
e−x

2/(2σ2) (4.9)
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while for M2 it is

fX(x|M2) =

∫ ∞
−∞

fΘ(θ|M2) fX|Θ(x|θ) dθ

=
1

2πσσ0

∫ ∞
−∞

exp

(
−1

2

[
θ

σ2
0

+
(x− θ)2

σ2

])
dθ

(4.10)

Completing the square gives

θ

σ2
0

+
(x− θ)2

σ2
= (σ−2

0 +σ−2)

(
θ − σ−2x

σ−2
0 + σ−2

)2

+
x2

σ2
− σ−4x2

σ−2
0 + σ−2

(4.11)
so

fX(x|M2) =
e−x

2/(2σ2)

σσ0

√
2π(σ−2

0 + σ−2)
exp

(
x2

2σ2(1 + σ2/σ2
0)

)
(4.12)

and the Bayes factor is

fX(x|M2)

fX(x|M1)
=

1

σ0

√
σ−2

0 + σ−2
exp

(
x2

2σ2(1 + σ2/σ2
0)

)
(4.13)

Note that if σ0 � σ, we can write the Bayes factor as

fX(x|M2)

fX(x|M1)
≈ σ

σ0

e−x
2/(2σ2) (4.14)

The second factor shows that the more detailed model M2 can fit
the observed data better, while the first factor acts as an “Occam
factor” which penalizes it for having a tunable parameter.
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