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Preliminaries

0.1 Administrata

Syllabus

Instructor’s name (Whelan) rhymes with “wailin’.

Text: Devore, Probability and Statistics for Engineering and
the Sciences. The official version is the 8th edition, which
is probably the version you used in MATH 251. There is
a new 9th edition out, but the changes between editions
should be minimal.

Course  website: http://ccrg.rit.edu/~whelan/
MATH-252/. I intend to post materials there rather
than on mycourses.

Course calendar: tentative timetable for course.

Structure:

— Read relevant sections of textbook before class
— Lectures to reinforce and complement the textbook
— Practice problems (odd numbers; answers in back but
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more useful if you try them before looking!).

— Problem sets to hand in: practice at writing up your
own work neatly & coherently. Problem sets will also
contain some numerical exercises intended to be done
in minitab. Note: doing the problems is very impor-
tant step in mastering the material.

— Minitab: proprietary statistical software package,
sort of like Fxcel with built-in statistical functional-
ity. Available for free-as-in-beer download on cam-
pus (or over VPN) via https://www.rit.edu/its/
services/software-licensing/minitab. Primary
version runs under Windows; there is also “Minitab
Express” for Mac. Apparently no version exists for
Linux, and I haven’t been able to get either one to run
under an emulator. Minitab is installed in all of the
computer labs, and I'll be having some of my office
hours in Gosnell 08-1345. It will probably be possible
(if less straightforward) to do the numerical exercises
in another environment, like Python/SciPy, although
someone is likely to expect you to know minitab down
the road.

— Quizzes: closed book, closed notes, use scientific cal-
culator (not graphing calculator, not your phone!)

— Prelim exams (think midterm, but there are two of
them) in class at roughly 1/3 and 2/3 of the way
through the course: closed book, one handwritten for-
mula sheet, use scientific calculator (not your phonel)

— Final exam will be cumulative (but focus more on last
third of the course).

e Grading:

9% Problem Sets & Computer Exercises
6% Quizzes

25% First Prelim Exam
25% Second Prelim Exam
35% Final Exam

You'll get a separate grade on the “quality point” scale (e.g.,
2.5-3.5 is the B range) for each of these five components;
course grade is weighted average.

0.2 Outline

1. Parameter Estimation

(a) Point Estimation (Chapter Six)
(b) Interval Estimation (Chapter Seven)

2. Hypothesis Testing
(a) One-Sample Hypothesis Testing (Chapter Eight)
(b) Two-Sample Inference (Chapter Nine)

3. Model Fitting

(a) Regression (Chapter Twelve)
(b) Goodness of Fit (Chapter Fourteen)

4. Non-Parametric Methods (Chapter Fifteen, time permit-
ting)

Warning: although we’ll do a brief review this week, you will
generally be expected to recall and apply what you learned in
MATH 251.

1 Review of Statistical Formalism

1.1 Descriptive Statistics

In this course, we will perform a number of manipulations on
data sets in order to make probabilistic statements on the un-
derlying source of the data. (E.g., properties of a population
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from which a sample may be drawn.) The basic building blocks
of these calculations are the quantities of descriptive statistics,
covered in Chapter One of Devore (see http://ccrg.rit.edu/
~whelan/courses/2013_1sp_1016_345/notes01.pdf for more
details.)

As a quick refresher, consider rainfall totalsﬂ from a weather
station in Phoenix, AZ for the years 2011-2015: 4.92, 5.35, 6.77,
8.74, and 5.08 inches, respectively. We write this as xy; = 4.92,
T = 5.3b, x3 = 6.77, x4, = 874, and x5 = 5.08 inches, re-
spectively. Recall some of the basic summary statistics we can
construct from these data:

e To get the sample median T, we sort the values in order
from lowest to highest, and pick the middle one:

4.92, 5.08, 5.35, 6.77, 8.74

Thus = 5.35. Note that at least half the {z;} have z; <7
and at least half have x; > . The median is also called the
50th percentile, and this can be extended to other choices:
6.77 is the 7T0th percentile because at least 70% of the values
have x; < 6.77, and at least 30% have x; > 6.77.

e The sample mean T is the average value

5

49245354 6.77+8.74+5.08  30.86
N 5 5

5
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IEZ—($1+IE2+$3+$4+$5):5§%

= 6.172
(1.1)

'http://alert.fcd.maricopa.gov/alert/Rain/Master/4810.pdf
Note that we’ve taken a rather small dataset to illustrate what’s happening
in these calculations by hand. In practice, you’d process any decent-sized
dataset with a computer package of some sort.

Note that it would be more appropriate to quote this value
as 6.17, because the individual values are quoted to three
significant figures, but we don’t know that e.g., 4.92 means
4.920000000 and not 4.924 or 4.916. As a general rule, your
answers shouldn’t carry more significant figures than the
experimental data you start with. Your calculator, statis-
tical software program, etc can carry more than that, and
it’s good to keep some extra digits for internal calculations
and not round off intermediate quantities too much.

In general, if there are n data points in the sample, the
sample mean is defined as T =+ Y1 | ;.

The sample variance s* is defined as

= ! > (-7 (1.2)

It’s sort of an average square deviation from the sample
mean (we'll get to the reason it’s n — 1 rather than n in a
moment). So to construct it for our rainfall data, we’d do
the following:

492in | —1.252in | 1.567504 in?

5.35in | —0.822in | 0.675684in?

6.77in | 0.598in | 0.357604 in*

8.741in 2.568in | 6.594624 in*

5.08in | —1.092in | 1.192464 in”

U W N

Adding the last column gives 10.38788in?, so the sample
variance in this case is s? = w‘t&“rﬁ = 2.59697in>. Note
the units on this are inches-squared, not inches. If we write
this to two significant figures, we get 2.60in%

The sample standard deviation s is the square root of the
sample variance, so here s = v'2.59697 in” ~ 1.61 in.
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There is a mathematical trick that notes that (after some alge-
bra)

@i =2) = 3 () —n(@)? (13

which can be used to calculate the sample variance as

ﬁ:nilzjﬂf n_1<XpJ (1.4)

in the case where you happen to know Y "  x; and D1 ().
This “shortcut” is actually somewhat dangerous with real data,
though; if it happens that the typical value of (z; — T)? is a lot
smaller than Z? itself, you can have a situation where the two
terms being subtracted in can be a lot larger than their
difference, and so you can get large errors in s? if you round off
(o 2:)? and/or Y (z;)? (or, in extreme cases, a computer
does it for you). See http://www.johndcook.com/blog/2008/
09/28/theoretical-explanation-for-numerical-results/

1.2 Random Variables

The second concept to recall from your previous course is the
concept of a random variable. We generally write this with
a capital letter X, and define the probability it has to take
on certain values. For any random variable, we can define the
cumulative distribution function (cdf)

F(z) = P(X <) (1.5)

If there are multiple random variables and we need to specify
which one we're talking about, we may write this Fx(z).

A discrete random variable can take one of a (possibly infinite)
set of values, and the probability of it taking a particular value

is given by the probability mass function (pmf, written py (x) if
necessary)
plz) = P(X = 1) (1.6)

The probability of X taking on one of a set of values A is the
sum of the pmf over the values in that set:

P(X € A) =) p(x) (1.7)

€A

As a special case, the sum of all the pmf values is equal to the
probability that the random variable takes on some value, i.e.,

S pla) =1 (L8)

This is the normalization condition for the pmf.

An example of a discrete random variable is a binomial ran-
dom variable; this describes the situation where we do a set of
“Bernoulli trials”, experiments which each have the same prob-
ability p of “success” and have no influence on each other. If we
do n such trials, the number of successes is a random variable
X with pmf

n €T n—r __ : T _ n—x
p@)zb@:mp%=<x)p(1—p) —-——j;ﬁp(l p)

(1.9)

where 2! = 1x 2 x -+ x (z—1) x x is the factorial of x, so that

(n) :n><(n—l)x---x(n—x+1)x(n—x)

x rX(rz—1)x - x2x1

(1.10)

See Chapter Three of Devore and http://ccrg.rit.edu/
~whelan/courses/2011_4wi_1016_351/notes03.pdf for more
details on discrete random variables.

A continuous random variable has zero probability of taking
any precise numerical value, but its probability of falling in a
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range of interest is defined by its probability density function

(pdf) f(z) (or fx(x))

Pla< X <b) = /bf(:n) dx (1.11)

Note that since there’s zero probability that X equals exactly
a or b, it doesn’t matter if we write < or < in the probability.
The normalization condition for the pdf of a continuous random
variable is

P(—00 < X <0) :/ flx)dz =1 (1.12)
The pdf is the derivative of the pdf, so
f@=F@) ad  Fo)= [ fwd (1)

One common type of continuous random variable is that de-
scribed by a normal distribution (also known as a Gaussian dis-
tribution), which has a pdf described by parameters p (which
may be positive, negative or zero and o (which must be positive)

f(2) = fla; ,0) = Uj%e-“-“)?/@*) (1.14)

its cumulative distribution function is

Flz) =0 (““) (1.15)

o

where the function ®(z) is defined as

CD(Z):\/%/Z 1 (1.16)

See Chapter Four of Devore and http://ccrg.rit.edu/
~whelan/courses/2011_4wi_1016_351/notes04.pdf for more
details on continuous random variables.

An important quantity which can be calculated from a prob-
ability distribution (pmf or pdf) is the expected value E(X),
which is defined as a weighted average value constructed from
the pmf or pdf:

E(X)=> xpx) or E(X)—/_ooxf(a;)dx (1.17)

o0

This also works for any function of the random variable:

E(b(X) = Y h@)p(a) o EG(X0) = [ ha) f(o)do

oo

(1.18)
We often write the expected value E(X) as p or uy and refer
to it as the mean of the distribution. This is analogous to the
sample mean T of descriptive statistics, but instead of averag-
ing over a specific set of values in the dataset, it’s averaging
over a hypothetical repeated set of measurements. This is also
sometimes called the population mean.

One application of the expected value is the variance V(X) =
E([X — px]), which is sometimes written o2 or 0%. This is the
analogue of the sample variance s*>. We sometimes call 0% the
variance of the distribution associated with X, or the population
variance.

Finally, the median of the distribution, i or uyx is defined
indirectly as the value that the random variable has at least a
50% chance of lying on either side of:

< P(X > ) (1.19)

For a discrete distribution, this has the simpler form

/_i f)de = % = /:) f(z)da (1.20)
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Practice Problems

1.39, 1.51, 3.37, 3.39, 3.41, 3.43, 4.17

Thursday 25 August 2016
1.3 Random Samples

Recall the concept of joint probability distributions for multiple
random variables. For instance, if X7, X5, and X3 are discrete
random variables, we can write the joint pmf

p([L‘l,IQ,J?g) = P([Xl = 371] N [XQ = 1'2] N [X3 = ZL‘3]) (121)

L.e., the probability that X; takes the value xy, and X, takes
the value x5, and X3 takes the value x3. Likewise, if X; and X,
are continuous random variables, the joint pdf f(z,x2) can be
used to construct probabilities like

P(Ja< X <b]N[e< Xo<d]) = /Cd (/abf(xl,xg) dx1> dxs (1.22)

We say that X;, Xs,... X, are independent random variables if,
for any possible values of x1, xs,...x,, the joint pdf (taking the
continuous case for concreteness) can be written

X1, X5, ... X, independent means
f(%l, To, ... ,.Tn) = fl(ﬂfl) fg(.TQ) s fn(a:n) (123)

A special case of this is when all of the functions fi, fa, ..., fa
are actually the same function; then we say the random variables
are independent and identically distributed (iid):

X1, X5, ... X, iid means
(1, @9, oxn) = f(o1) fza) - f(2n) (1.24)

We refer to this as a sample of size n from the distribution f(z).

Given n random variables X, X5, ...X,,, we refer to any
function of the rvs as a statistic. By its nature, a statistic is itself
a random variable. A number of useful statistics are created by
combining the rvs in a sample using the same formulas that
define descriptive statistics from a dataset. For example:

e The sample mean is X = 23" X,
e The sample variance is 5% = —L-5"" (X; — X)%s

n—1

e The sample median X is a random variable defined by sort-
ing the n values returned by the random variables in the
sample and picking the one in the middle.

The linearity of the expected value can be used to work out
the expected values of linear combinations of random variables.
In particular, if

Y = (Ile + CZQXQ S Clan = ZaZXl (125)
=1

then

py = E(Y)=aE(X)) + a:E(Xo) + -+ - + a, B (X))

(1.26)
= aiy + Qgfly + -+ Qpfin

In the case of the variance (writing it for n = 2 for compactness,

V(a1X1 + a2X2) = a12V(X1> + 2(11@2 COV(Xl, XQ) + CL22V(X2)
(1.27)

where
Cov(X1, Xo) = B([X: — m][Xe — ) (1.28)

is the covariance of the random variables X; and X5. An impor-
tant result shows that independent random variables have zero



covariance[?] so

if Xq,..., X, independent,
V(Y)=a? V(X)) + a2’V (X)) + - +a,*V(X,) (1.29)

Returning to the case of a random sample, the statistical
properties of the sample mean X and S? are of interest, specif-
ically, if the distribution has mean p = FE(X;) and variance
o? =V(X;) = B([X; — pf?),

_ — 1
EX)=p and V(X)=-0? (1.30)
n
One important result (shown in http://ccrg.rit.edu/
~whelan/courses/2011_4wi_1016_351/notes05.pdf for ex-
ample) is that

E (i(){i - X)2> =(n—1)o*; (1.31)

=1

this means that the sample variance S, defined with n — 1 in
the denominator, has an expectation value

E(S?) = o? (1.32)

This is why the sample variance s generated from a data set is
usually given as —= >"" | (z; — T)%.

Finally, note that the normal distribution has some interesting
properties:

1. Any statistic constructed as a linear combination of
normally-distributed random variables is itself normally dis-
tributed

2The converse is not true; zero covariance does not imply independence.

2. The sum (or the mean) of a large number of iid random vari-
ables of almost any distribution is approximately normally
distributed. This is known as the Central Limit Theorem.

See Chapter Five of Devore and http://ccrg.rit.edu/
~whelan/courses/2011_4wi_1016_351/notes05.pdf| for more
details on joint distributions and random samples.

1.3.1 Properties of Sums of Random Variables

T, = Xn: X; (1.33)
i=1

H Property \ When is it true?

B(T,) =3, E(Xi) Always

V(L) =, V(X)) When {X;} independent

Exact, when {X;} normally distributed

T, normally distributed Approximate, when n 2> 30

(Central Limit Theorem)

Practice Problems

4.29, 5.39, 5.45, 5.55, 5.65, 5.89

Tuesday 30 August 2016
Guest lecture by Dr. Richard O’Shaughnessy

2 Fundamentals of Point Estimation

Practice Problem

6.11, 6.13, 6.17, 6.19
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Thursday 1 September 2016
Guest lecture by Dr. Richard O’Shaughnessy

3 Methods of Point Estimation

3.1 Method of Moments
3.2 Maximum Likelihood Estimation

Practice Problems

6.23, 6.25, 6.29, 6.37
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