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1 Overview of Hypothesis Testing

We now consider another area of statistical inference known as
hypothesis testing. The usual formulation starts with a null hy-
pothesis H0 and an alternative hypothesis Ha, which produce
different probabilistic predictions about the outcome of an ex-
periment, and then, based on the observed data, decides between
two alternatives:

1. Reject H0

2. Don’t reject H0

The full scope of hypothesis testing is quite general, but for this
introduction, we’ll make some simplifying assumptions:

1. The data {Xi} are a sample of size n from a probability
distribution with pdf f(x; θ) (or pmf p(x; θ), if it’s a discrete
distribution).

2. The null hypothesis H0 specifies a single value for the pa-
rameter θ = θ0. (This is known as a “point hypothesis”
because it gives a single value of θ completely specifies the
distribution.)
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3. The alternative hypothesis Ha specifies some range of values
for θ which are inconsistent with θ0, typically one of the
following:

(a) θ 6= θ0
(b) θ > θ0
(c) θ < θ0

(Any of these is a “composite hypothesis” because it cor-
responds to a set of θ values, and therefore to a family of
distributions.)

4. The test is defined by constructing a statistic Y =
u(X1, . . . , Xn) and rejecting H0 or not according to the
value of Y .

For example, suppose we are testing the claims of a psychic who
is allegedly able to determine the suit of a card drawn from
a poker deck (clubs, diamonds, hearts, spades) without seeing
it, but whose ESP is imperfect. If we reshuffle the deck after
each draw, the test statistic for n draws is a binomial random
variable Y ∼ Bin(n, θ). The null hypothesis H0 is θ = 0.25
(no ESP; random guesses out of four suits), and the alternative
hypothesis Ha is θ > 0.25 (we assume a psychic will do better
than random guessing, not worse). Suppose we do 20 trials; one
test we could use is to reject H0 if the psychic gets more than 8
of them correct. (We’d expect 5 from pure guessing.) So if the
number of correct answers is 9 or more, we reject H0, but if it’s
8 or fewer, we do not. We call Y > 8 the rejection region for
this test.

1.1 Type I and Type II Errors

Because of the random nature of the experiment, there will be
some probability that the test will reject H0. Even if the null
hypothesis H0 is true, we will generally have a non-zero proba-

bility of rejecting it. Likewise, even if the alternative hypothesis
Ha is true, the probability that the data will lead us to reject
H0 will still generally be less than one. A perfect test would
have us never reject H0 if it’s true, and always reject H0 if Ha

is true, but in most situations there is no perfect test. A given
test thus has some probability of making an error. If H0 is true
and we reject it. this is called a Type I Error, also known as a
false alarm. (We have claimed to see an effect which was not
there.) If Ha is true, but we do not reject H0, this is called a
Type II Error, also known as a false dismissal. (We have failed
to find an effect which is there.) The probability of each of these
errors happening has to be understood as a conditional proba-
bility (since it assumes one hypothesis or the other is true). The
probability of a type I error, or the false alarm probability, is

α = P (reject H0|H0 is true) (1.1)

The probability of a type II error, or the false dismissal proba-
bility, is

β = 1− P (reject H0|Ha is true) (1.2)

Actually, since we’re taking the alternative hypothesis Ha to be
a composite hypothesis, this depends on the actual value of θ:

β(θ) = 1− P (reject H0|parameter value θ) (1.3)

We’d generally like to have α and β as small as possible. In
practice, one usually decides what false alarm probability α one
can afford, and then designs a test which minimizes β(θ) for any
θ given that constraint.

A related quantity is the power of the test, which is the prob-
ability of rejecting H0 if Ha is true. It is written γ(θ) and equal
to 1− β(θ).

For the case of the ESP test described above, the false alarm
and false dismissal probabilities can be determined from the bi-

2



nomial cdf:

α = P (Y > 8|θ = 0.25) =
20∑
x=9

(
20

x

)
0.25x0.7520−x

= 1− F (8; 20, 0.25) ≈ 1− .959 = 0.041

(1.4)

where we’ve looked up the binomial cdf from Table A.1 in the
back of Devore. Likewise, if the true θ is 0.50, the false dismissal
probability of the test will be

β(0.20) = P (Y ≤ 8|θ = 0.50) = F (8; 20, 0.50) ≈ .252 (1.5)

2 Tests Concerning the Mean

2.1 Choice of Exclusion Region

Suppose you have a sample of size n drawn from some distribu-
tion, and a null hypothesis H0 that the mean of this distribution
is µ = µ0. You’re given a tolerable false-alarm rate α (say 5%
or 10%) and want to construct a test of H0 given with that α.
We can construct this using the same statistics that we used to
make confidence intervals. In particular

1. If the sample is drawn from a normal distribution (or if n &
30, almost any distribution) with a known variance σ2, the

statistic Z = X−µ0
σ/
√
n

obeys a standard normal distribution, if

H0 is true. Here X =
∑n

i=1Xi is the sample mean.

2. If we have a large sample (n & 40) from a distribution
(normal or otherwise) with a finite but unknown variance,

the statistic Z = X−µ0√
S2/n

is approximately standard-normal

distributed, if H0 is true. Here S2 = 1
n−1

∑n
i=1(Xi −X)2 is

the sample variance.

3. If the sample is drawn from a normal distribution with un-

known variance, the statistic T = X−µ0√
S2/n

obeys a Student

t-distribution with n− 1 degrees of freedom.

The construction of the tests thus uses the percentiles of either
the standard normal or Student t distribution as appropriate.

We’ll look in detail at the first case, since the construction in
the other cases is analogous. First, the question is whether to

reject H0 if the statistic X−µ0
σ/
√
n

is “too high”, “too low”, or both.

This depends on the form of the alternative hypothesis Ha. (In
fact, this choice of direction is basically the only way that the
alternative hypothesis affects the construction of the test.) The
probabilistic statements of interest are

P

(
X − µ0

σ/
√
n
> zα

∣∣∣∣µ= µ0

)
= α (2.1a)

P

(
X − µ0

σ/
√
n
<−zα

∣∣∣∣µ= µ0

)
= α (2.1b)

and

P

([
X − µ0

σ/
√
n
<−zα/2

]⋃[
X − µ0

σ/
√
n
> zα/2

]∣∣∣∣µ= µ0

)
= α

(2.1c)
Any one of these can be used to create a rejection region with
false alarm probability α. Which one you want depends on the
alternative hypothesis. If Ha is µ > µ0, you want to reject H0 if
X is a lot more than µ0, i.e., if Z is too large. (If X is a lot less
than µ0, then the null hypothesis H0 is a bad fit to the data, but
the alternative hypothesis Ha is even worse.) So in that case we
use Z > zα as our rejection region. Similarly, if Ha is µ < µ0,
we reject H0 if X is too far below µ0, i.e., if Z < zα. If Ha is
µ 6= µ0, then we X either too far above or below µ0 would be
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an inconsistency with H0 which was more consistent with Ha.
So, to summarize, for a normal distribution with known
variance σ2:

1. If Ha is µ > µ0, we reject H0 if X−µ0
σ/
√
n
> zα. This is called

an upper-tailed test.

2. If Ha is µ < µ0, we reject H0 if X−µ0
σ/
√
n
< −zα. This is called

a lower-tailed test.

3. If Ha is µ 6= µ0, we reject H0 if either X−µ0
σ/
√
n
< −zα/2 or

X−µ0
σ/
√
n
> zα/2. This is called a two-tailed test.

Similarly, for a large sample from any distribution with
unknown σ:

1. If Ha is µ > µ0, we reject H0 if X−µ0√
S2/n

> zα.

2. If Ha is µ < µ0, we reject H0 if X−µ0√
S2/n

< −zα.

3. If Ha is µ 6= µ0, we reject H0 if either X−µ0√
S2/n

< −zα/2 or

X−µ0√
S2/n

> zα/2.

and finally, for a sample from a normal distribution with
unknown σ:

1. If Ha is µ > µ0, we reject H0 if X−µ0√
S2/n

> tα;n−1.

2. If Ha is µ < µ0, we reject H0 if X−µ0√
S2/n

< −tα;n−1.

3. If Ha is µ 6= µ0, we reject H0 if either X−µ0√
S2/n

< −tα/2;n−1 or

X−µ0√
S2/n

> tα/2;n−1.

The two sorts of tests using the standard normal percentiles
are called z tests; the one using the Student t percentiles is called
a t test.

Practice Problems

8.1, 8.7, 8.9, 8.13, 8.19, 8.31

Tuesday 20 September 2016

2.2 False Dismissal Probability

We limit attention to the first case, which is the most straight-
forward.

To get the false dismissal probability β(µ), or equivalently the
power γ(µ) = 1 − β(µ), we need to consider the probability of
the sample landing in the rejection region for a given µ = µ′

consisted with the alternative hypothesis Ha. In the case of a

normal distribution with known σ, the test statistic Z = X−µ0
σ/
√
n

will still be normally distributed, but now, since X ∼ (µ′, σ2/n),
the mean of Z will be µ′−µ0

σ/
√
n

. (The variance will still be 1.) Thus,

if Ha is µ > µ0

β(µ′) = P

(
X − µ0

σ/
√
n
≤ zα

∣∣∣∣µ= µ′
)

= Φ

(
zα −

µ′ − µ0

σ/
√
n

)
(2.2)

while if Ha is µ < µ0

β(µ′) = P

(
X − µ0

σ/
√
n
≥−zα

∣∣∣∣µ = µ′
)

= 1− Φ

(
−zα −

µ′ − µ0

σ/
√
n

)
= Φ

(
zα −

µ0 − µ′

σ/
√
n

)
(2.3)

Note that Φ(zα) = 1− α, and in each case the argument is less
than zα, so β(µ′) < 1− α, which means γ(µ′) > α. This makes
sense, since you’d expect the test to be more likely to reject H0

if Ha is true than if H0 is true.
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For a two-tailed test, the calculation of the false dismissal
probability is also straightforward:

β(µ′) = P

(
−zα/2 ≤

X − µ0

σ/
√
n
≤ zα/2

∣∣∣∣µ = µ′
)

= Φ

(
zα/2 −

µ′ − µ0

σ/
√
n

)
− Φ

(
−zα/2 −

µ′ − µ0

σ/
√
n

) (2.4)

2.3 Sample Size Determination

We can turn the false dismissal probability expressions for one-
tailed tests around, and ask what sample size n will allow us
to produce a test with a specified false alarm probability α and
false dismissal probability β for a nominal population mean µ′.
We use the fact that

β = 1− Φ(zβ) = Φ(−zβ) , (2.5)

which means that

−zβ =

{
zα − µ′−µ0

σ/
√
n

upper tailed

zα − µ0−µ′
σ/
√
n

lower tailed
(2.6)

In either case if we solve for n we get the minimum sample size

n =

(
σ(zα + zβ)

µ′ − µ0

)2

(2.7)

3 Tests Concerning Proportion

Now we turn once again to the case of a binomial-type experi-
ment, e.g., sampling n members from a large population where
some fraction (or proportion) p of the members have some de-
sired trait, or doing n independent trials with a probability p for

success on each trial. As usual, the language about sample and
random variables is a little different. We could consider this to
be a sample of size n from a Bernoulli distribution Bin(1, p), or
a single binomial random variable X ∼ Bin(n, p). In any event,
it’s more convenient to work with the estimator p̂ = X/n, which
has mean

E(p̂) =
np

n
= p (3.1)

and variance

V (p̂) =
np(1− p)

n2
=
p(1− p)

n
(3.2)

We can consider two regimes when testing a null hypothesis
H0 which states p = p0: if np0 & 10 and n(1− p0) & 10, we can
treat the distribution of p̂ as approximately normal with the
mean and variance given above, which means we can use the
testing procedures already defined. If not, we need to use the
binomial cumulative distribution function to define and evaluate
the tests.

3.1 Large Sample Tests

Supposing the normal approximation to be valid, the test statis-
tic appropriate when the null hypothesis H0 is p = p0 will be

Z =
p̂− p0√

p0(1− p0)/n
(3.3)

since p̂ is approximately N(p0, p0(1− p0)/n), Z will be approx-
imately standard normal, This means

P

(
p̂− p0√

p0(1− p0)/n
> zα

∣∣∣∣∣µ= µ0

)
≈ α (3.4a)

P

(
p̂− p0√

p0(1− p0)/n
<−zα

∣∣∣∣∣µ= µ0

)
≈ α (3.4b)

5



and

P

([
p̂− p0√

p0(1− p0)/n
<−zα/2

]⋃[
p̂− p0√

p0(1− p0)/n
> zα/2

]∣∣∣∣∣µ= µ0

)
≈ α (3.4c)

That makes the large-sample tests

1. If Ha is p > p0, we reject H0 if p̂−p0√
p0(1−p0)/n

> zα.

2. If Ha is p < p0, we reject H0 if p̂−p0√
p0(1−p0)/n

< −zα.

3. If Ha is p 6= p0, we reject H0 if either p̂−p0√
p0(1−p0)/n

< −zα/2
or p̂−p0√

p0(1−p0)/n
> zα/2.

3.1.1 False Dismissal Probability

Estimating β(p′) for these tests as a function of the actual pro-
portion p′ is a little different than in the case of a population
mean, since now the variance depends on the parameter p′ as
well, i.e., if p = p′, we know E(p̂) = p′ and V (p̂) = p′(1− p′)/n,
so

E(Z) =
p′ − p0√

p0(1− p0)/n
(3.5)

and

V (Z) =
p′(1− p′)/n
p0(1− p0)/n

=
p′(1− p′)
p0(1− p0)

(3.6)

So for example if Ha is p > p0, we have false dismissal probability

β(p′) = P (Z ≤ zα| p= p′) = Φ

(
zα − (p′ − p0)/

√
p0(1− p0)/n√

[p′(1− p′)]/[p0(1− p0)]

)

= Φ

(
zα
√
p0(1− p0)/n− (p′ − p0)√

p′(1− p′)/n

)
(3.7)

3.2 Small Sample Tests

If the sample size is too small (or p0 is to close to zero or one)
to use the normal trick, we basically have to construct the test
using the binomial cdf

B(x;n, p) =
x∑
y=0

b(x;n, p) =
x∑
y=0

(
n

x

)
px(1− p)n−x (3.8)

In practice we won’t actually evaluate the sum; we’ll look it up
in a table or ask a statistical software package to do it for us.

A test which rejects H0 when X ≥ c, i.e., p̂ ≥ c/n, appropriate
for alternative hypothesis Ha: p > p0, will have a false alarm
probability of

α = P (X≥c|p=p0) = 1−P (X≤c−1|p=p0) = 1−B(c−1;n, p0)
(3.9)

and similarly for lower-tailed and two-tailed test. In general, we
won’t be able to produce a test with exactly the desired false
alarm probability, but we can pick one which is close.

Practice Problems

8.35, 8.39, 8.43, 8.45

Thursday 22 September 2016

Review for Prelim Exam One (up to and including section 8.2).
Please bring questions, and ideally ask them by email before
class.

Tuesday 27 September 2016

Prelim Exam One (up to and including section 8.2). Closed
book, closed notes, but you may bring one handwritten
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8.5”×11” (front and back) formula sheet, and also use a sci-
entific calculator.

Thursday 29 September 2016

4 P -values

So far we’ve carried out hypothesis testing by specifying the
desired false alarm probability (significance) α for the test, and
then based on the statistic calculated from the data, getting
a yes or no answer on rejecting the null hypothesis. But this
doesn’t capture, for example, whether we just managed to reject
H0 at that level, or cleared the threshold by a good margin.
For example, suppose we construct a z statistic for a one-tailed
test, and obtain the value z = 1.84. If our test was designed
to have false-alarm probability α = 0.10, the threshold would
be z.10 = 1.282, and since 1.84 > 1.282, we would reject H0

according to this test. On the other hand, if we’d chosen α =
0.01, the threshold would be z.01 = 2.326, and since 1.84 < 2.326,
we would not reject H0 using the test at this lower false alarm
probability. Looking at some levels in between, we find

α .10 .05 .025 .01
zα 1.282 1.645 1.960 2.326
Reject H0? Yes Yes No No

If the false alarm rate for the test is “low” given the data, we do
not reject the null hypothesis; if it is “high”, we do. Evidently,
there’s some dividing value of α at which z = zα; at this false
alarm probability we cross over from rejecting to not rejecting
H0. If zα = 1.84, this defines the α in question as

α = P (Z > zα) = 1− Φ(zα) = 1− Φ(1.84) ≈ 1− .9671 = .0329
(4.1)

we call this critical α the P -value for the hypothesis comparison,
given the data. In general, we can say

The P -value associated with a data set in the context of a
family of hypothesis tests is the highest false alarm probability at
which we fail to reject the null hypothesis.

Another way of saying it is, it’s the probability, if the null
hypothesis is true, that you’d obtain data at least as inconsistent
with the null hypothesis as what you actually observed. For a
lower-tailed test, this means it’s the probability of obtaining a
statistic lower than the actual value; for instance with a lower-
tailed t test with 5 degrees of freedom and a statistic value of
−2.7, the P value is (the value can be obtained from table A-8
of Devore)

P (T5 <−2.7) = FT (−2.7, 6) = .018 (4.2)

For a two-tailed Z or T test, it’s the probability that the
statistic would be as far away from zero as what you observed.
For example, if we found z = 1.84 in the context of a two-sided
alternative hypothesis, we’d have a P value of

P (Z <−1.84) + P (Z > 1.84) = .0329 + .0329 = .0658 (4.3)

Similarly, for a t statistic of −2.7, where there are five dof and
a two-sided alternative hypothesis, we have a P value of

P (T5 <−2.7) + P (T5 > 2.7) = .018 + .018 = .036 (4.4)

Explicitly, for a z test, the P value is

1. 1− Φ(z) for an upper-tailed test

2. Φ(−z) for a lower-tailed test

3. Φ(− |z|) + 1− Φ(|z|) = 2Φ(− |z|) for a two-tailed test
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5 Bonus Material

5.1 ROC Curves

5.2 Likelihood Ratio Tests

Practice Problems

8.49, 8.51, 8.81, 8.87
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