MATH 252-01: Probability and Statistics II

Problem Set 2

Assigned 2016 August 30
Due 2016 September 6

Show your work on all problems! If you use a computer to assist with numerical computations, turn in your source code as well.

1 Devore Chapter 6, Problem 10

2 Devore Chapter 6, Problem 22

3 Devore Chapter 6, Problem 32

4 Computational Exercise: Bootstrapping

The Bootstrap technique provides a model-free way to estimate the error associated with a point estimate from a reasonable-sized sample. If the sample values are $\left\{x_{i}\right\}=x_{1}, x_{2}, \ldots, x_{n}$, we create a total of B bootstrap samples $\left\{x_{i}^{(1)}\right\},\left\{x_{i}^{(2)}\right\}, \ldots,\left\{x_{i}^{(B)}\right\}$. Each sample has size n, and each is generated by drawing with replacement from $\left\{x_{i}\right\}$. (So in general, a given bootstrap sample will have some repeated values, and some values not represented.) To estimate the error associated with the sample mean $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ of the original sample, we calculate the means of the B bootstrap samples, $\bar{x}^{(1)}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{(1)}, \bar{x}^{(2)}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{(2)}, \ldots, \bar{x}^{(B)}=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{(B)}$, and then take the (sample) variance of $\bar{x}^{(1)}, \bar{x}^{(2)}, \ldots, \bar{x}^{(B)}$,

$$
s_{\bar{x}}^{2}=\frac{1}{B-1} \sum_{j=1}^{B}\left(\bar{x}^{(j)}-\overline{\bar{x}}^{*}\right)^{2}
$$

where $\overline{\bar{x}^{*}}=\frac{1}{B} \sum_{j=1}^{B} \bar{x}^{(j)}$ is the average of the means of the bootstrap samples. The bootstrap estimate of the error associated with the original sample mean \bar{x} is then $\sqrt{s_{\bar{x}}^{2}}$.
a. Download the following data set which is a sample of size $n=5$
http://ccrg.rit.edu/~whelan/courses/2016_3fa_MATH_252/data/ps02_prob4_small.dat using the username and password given in class; generate $B=8$ bootstrap samples by randomly choosing 8 sets of 5 values each from the original dataset. Be sure to turn in a table containing these 8 bootstrap samples.
b. Calculate the mean of each of your 8 bootstrap samples.
c. Calculate the bootstrap error as the sample standard deviation of this set of 8 bootstrap means. Note that this is not a robust use of the bootstrap method, since we have a small number of samples, but it's a way to see how the calculation works explicitly.
d. Repeat the calculation using the data set http://ccrg.rit.edu/~whelan/courses/2016_3fa_MATH_252/data/ps01_prob4.dat
which has size $n=121$, with $B=200$ bootstrap samples. (You don't need to print out the
full set of 200×121 values, just calculate the bootstrap error estimate and document the procedures.) If you have trouble automatically generating the bootstrap samples, you may use the datafile
http://ccrg.rit.edu/~whelan/courses/2016_3fa_MATH_252/data/ps02_prob4_resampled. dat
which contains 200 columns, each with a 121-row bootstrap sample.
e. The data were actually generated from a $\operatorname{Gamma}(1.5,15)$ distribution; use this to calculate the standard error $\sqrt{V(\bar{X})}$. (Hint: the sample mean of a sample of size n from a Gamma (α, β) distribution is a statistic which follows a $\operatorname{Gamma}(n \alpha, \beta / n)$ distribution.)

